Abstract
A theoretical study was performed on the 1,3-dipolar cycloaddition between 2,3-dihydrofuran and substituted phenyl azide using Density Functional Theory (DFT) in combination with a 6-311++G(d,p) basis set. The optimum geometries for reactant, transition state and product, as well as the kinetic data, rate constants and reaction constant (ρ) were investigated to rationalise the substitution effects and reaction rates of the 1,3-dipolar cycloaddition process in various solvents. The DFT calculation and Frontier Molecular Orbital (FMO) theory as well as the atomic Fukui indices show that the electron-withdrawing substituents enhance the reaction constant (ρ > 0), especially in polar aprotic solvents. Consequently, small changes in the rate constant of the reaction in various solvents and geometric similarity between reactants and transition state structures were suggested as the early transition state mechanism for electron-withdrawing substituents. In addition, the slope of the Hammett plot and susceptibility of the reaction to electron-withdrawing substituents in various solvents confirmed the mechanism.
[1] Argyropoulos, N. G., Mentzafos, D., & Terzis, A. (1990). 1-3-Dipolar cycloaddition reactions of 1,4-benzoquinones with nitrilimines. Journal of Heterocyclic Chemistry, 27, 1983–1988. DOI: 10.1002/jhet.5570270725. http://dx.doi.org/10.1002/jhet.557027072510.1002/jhet.5570270725Search in Google Scholar
[2] Arshadi, S., Bekhradnia, A. R., Ahmadi, S., Karami, A. R., & Pourbeyram, S. (2011a). New insights on the mechanism of thermal cleavage of unsaturated bicyclic diaziridines: A DFT study. Chinese Journal of Chemistry, 29, 1347–1352. DOI: 10.1002/cjoc.201180253. http://dx.doi.org/10.1002/cjoc.20118025310.1002/cjoc.201180253Search in Google Scholar
[3] Arshadi, S., Bekhradnia, A. R., & Ebrahimnejad, A. (2011b). Feasibility study of hydrogen-bonded nucleic acid base pairs in gas and water phases — a theoretical study. Canadian Journal of Chemistry, 89, 1403–1409. DOI: 10.1139/v11-124. http://dx.doi.org/10.1139/v11-12410.1139/v11-124Search in Google Scholar
[4] Aso, M., Ojida, A., Yang, G., Cha, O. J., Osawa, E., & Kanematsu, K. (1993). Furannulation strategy for synthesis of the naturally occurring fused 3-methylfurans: efficient synthesis of evodone and menthofuran and regioselective synthesis of maturone via a Lewis acid catalyzed Diels-Alder reactions. Some comments for its mechanistic aspects. The Journal of Organic Chemistry, 58, 3960–3968. DOI: 10.1021/jo00067a031. 10.1021/jo00067a031Search in Google Scholar
[5] Awad, M. K. (2001). Theoretical investigations of [4π S+2π S] cyclodimerization and stereoselectivity of phthalazin derivatives. Journal of Molecular Structure: THEOCHEM, 542, 139–147. DOI: 10.1016/s0166-1280(00)00831-9. http://dx.doi.org/10.1016/S0166-1280(00)00831-910.1016/S0166-1280(00)00831-9Search in Google Scholar
[6] Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38, 3098–3100. DOI: 10.1103/physreva.38.3098. http://dx.doi.org/10.1103/PhysRevA.38.309810.1103/PhysRevA.38.3098Search in Google Scholar
[7] Bekhradnia, A. R., & Arshadi, S. (2007). Conformational analysis, infrared, and fluorescence spectra of 1-phenyl-1,2-propandione 1-oxime and related tautomers: Experimental and theoretical study. Monatshefte für Chemie — Chemical Monthly, 138, 725–734. DOI: 10.1007/s00706-007-0657-7. http://dx.doi.org/10.1007/s00706-007-0657-710.1007/s00706-007-0657-7Search in Google Scholar
[8] Bekhradnia, A. R., & Arshadi, S. (2011). Theoretical study of halogen effect in isomerization of 2-halo-[9]-annulen anion at the DFT Level. Chinese Journal of Structural Chemistry, 30, 906–912. Search in Google Scholar
[9] Bekhradnia, A. R., & Ebrahimzadeh, M. A. (2012). Theoretical study on some non-selective beta-adrenergic antagonists and correlation to their biologically active configurations. Medicinal Chemistry Research, 21, 2571–2578. DOI: 10.1007/s00044-011-9781-3. http://dx.doi.org/10.1007/s00044-011-9781-310.1007/s00044-011-9781-3Search in Google Scholar
[10] Bultinck, P., Carbó-Dorca, R., & Langenaeker, W. (2003). Negative Fukui functions: New insights based on electronegativity equalization. The Journal of Chemical Physics, 118, 4349–4356. DOI: 10.1063/1.1542875. http://dx.doi.org/10.1063/1.154287510.1063/1.1542875Search in Google Scholar
[11] Carpenter, J. E., & Weinhold, F. (1988). Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. Journal of Molecular Structure: THEOCHEM, 169, 41–62. DOI: 10.1016/0166-1280(88)80248-3. http://dx.doi.org/10.1016/0166-1280(88)80248-310.1016/0166-1280(88)80248-3Search in Google Scholar
[12] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (1998). Gaussian 98 [computer program]. Pittsburgh, PA, USA: Gaussian. Search in Google Scholar
[13] Gan, Y., Harwood, L. M., Richards, S. C., Smith, I. E. D., & Vinader, V. (2009). Cycloadditions of chiral carbonyl ylides with imine dipolarophiles as a route to enantiomerically pure α-amino-β-hydroxy acids. Tetrahedron: Asymmetry, 20, 723–725. DOI: 10.1016/j.tetasy.2009.02.029. http://dx.doi.org/10.1016/j.tetasy.2009.02.02910.1016/j.tetasy.2009.02.029Search in Google Scholar
[14] Gonzalez, C., & Schlegel, H. B. (1989). An improved algorithm for reaction path following. The Journal of Chemical Physics, 90, 2154–2161. DOI: 10.1063/1.456010. http://dx.doi.org/10.1063/1.45601010.1063/1.456010Search in Google Scholar
[15] Gonzalez, C., & Schlegel, H. B. (1990). Reaction path following in mass-weighted internal coordinates. The Journal of Physical Chemistry, 94, 5523–5527. DOI: 10.1021/j100377a021. http://dx.doi.org/10.1021/j100377a02110.1021/j100377a021Search in Google Scholar
[16] Huisgen, R., Grashey, R., Vernon, J. M., & Knuz, R. (1965). Umsetzungen von Δ2-Triazolinen und von Ringketon-Anilen mit Isocyanaten und Isothiocyanaten. Tetrahedron, 21, 3311–3323. DOI: 10.1016/s0040-4020(01)96953-4. (in German) http://dx.doi.org/10.1016/S0040-4020(01)96953-410.1016/S0040-4020(01)96953-4Search in Google Scholar
[17] Huisgen, R., Szeimines, G., & Mobius, L. (1967). 1,3-Dipolare Cycloadditionen, XXXII. Kinetik der Additionen organischer Azide an CC-Mehrfachbindungen. Chemische Berichte, 100, 2494–2507. DOI: 10.1002/cber.19671000806. (in German) http://dx.doi.org/10.1002/cber.1967100080610.1002/cber.19671000806Search in Google Scholar
[18] Huisgen, R. (1980). Cycloaddition mechanism and the solvent dependence of rate. Pure and Applied Chemistry, 52, 2283–2310. DOI: 10.1351/pac198052102283. http://dx.doi.org/10.1351/pac19805210228310.1351/pac198052102283Search in Google Scholar
[19] Huisgen, R., Fisera, L., Giera, H., & Sustmann, R. (1995). Thiones as superdipolarophiles. Rates and equilibria of nitrone cycloadditions to thioketones. Journal of the American Chemical Society, 117, 9671–9678. DOI: 10.1021/ja00143a008. http://dx.doi.org/10.1021/ja00143a00810.1021/ja00143a008Search in Google Scholar
[20] Kadaba, P. K. (1969). Triazolines-IV: Solvation effects and the role of protic-dipolar aprotic solvents in 1,3-cycloaddition reactions. Tetrahedron, 25, 3053–3066. DOI: 10.1016/s0040-4020(01)82839-8. http://dx.doi.org/10.1016/S0040-4020(01)82839-810.1016/S0040-4020(01)82839-8Search in Google Scholar
[21] Kadaba, P. K. (1973). Role of protic and dipolar aprotic solvents in heterocyclic syntheses via 1,3-dipolar cycloaddition reactions. Synthesis, 1973, 71–84. DOI: 10.1055/s-1973-22136. http://dx.doi.org/10.1055/s-1973-2213610.1055/s-1973-22136Search in Google Scholar
[22] Kanchithalaivan, S., Kumar, R. R., & Peruma, S. (2013). Synthesis of novel 16-spiro steroids: Spiro-7′-(aryl)tetrahydro-1H-pyrrolo[1,2-c][1,3]thiazolo-trans-androsterone hybrid heterocycles. Steroids, 78, 409–417. DOI: 10.1016/j.steroids.2012.12.017. http://dx.doi.org/10.1016/j.steroids.2012.12.01710.1016/j.steroids.2012.12.017Search in Google Scholar PubMed
[23] Lee, C. T., Yang, W. T., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789. DOI: 10.1103/physrevb.37.785. http://dx.doi.org/10.1103/PhysRevB.37.78510.1103/PhysRevB.37.785Search in Google Scholar
[24] Liu, Z. Z., Chen, Z. R., Yin, H., & Yuan, S. F. (2012). Mechanistic insights into the reaction of CF3CCl3 with SO3: Theory and experiment. Chemical Papers, 66, 1059–1064. DOI: 10.2478/s11696-012-0205-8. http://dx.doi.org/10.2478/s11696-012-0205-810.2478/s11696-012-0205-8Search in Google Scholar
[25] Michalak, A., De Proft, F., Geerlings, P., & Nalewajski, R. F. (1999). Fukui functions from the relaxed Kohn-Sham orbitals. The Journal of Physical Chemistry A, 103, 762–771. DOI: 10.1021/jp982761i. http://dx.doi.org/10.1021/jp982761i10.1021/jp982761iSearch in Google Scholar
[26] Ohgaki, E., Motoyoshiya, J., Narita, S., Kakurai, T., Hayashi, S., & Hirakawa, K. I. (1990). Effect of boron trifluoride-diethyl ether (BF3·OEt2) in the Diels-Alder reaction of quinoline- and isoquinoline-5,8-dione with unsymmetrical aliphatic dienes: Theoretical study on the orientation of cycloadditions. Journal of the Chemical Society, Perkin Transactions 1,1990, 3109–3112. DOI: 10.1039/p19900003109. http://dx.doi.org/10.1039/p1990000310910.1039/P19900003109Search in Google Scholar
[27] Padwa, A. (1984). 1,3-Dipolar cycloaddition chemistry. New York, NY, USA: Wiley. Search in Google Scholar
[28] Peng, C. Y., Ayala, P. Y., Schlegel, H. B., & Frisch, M. J. (1996). Using redundant internal coordinates to optimize equilibrium geometries and transition states. Journal of Computational Chemistry, 17, 49–56. DOI: 10.1002/(sici)1096-987x(19960115)17:1<49::aid-jcc5>3.0.co;2-0. http://dx.doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-010.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0Search in Google Scholar
[29] Reed, A. E., Curtiss, L. A., & Weinhold, F. (1988). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews, 88, 899–926. DOI: 10.1021/cr00088a005. http://dx.doi.org/10.1021/cr00088a00510.1021/cr00088a005Search in Google Scholar
[30] Rooney, J. J. (1995). Eyring transition-state theory and kinetics in catalysis. Journal of Molecular Catalysis A: Chemical, 96, Ll–L3. DOI: 10.1016/1381-1169(94)00054-9. http://dx.doi.org/10.1016/1381-1169(94)00054-910.1016/1381-1169(94)00054-9Search in Google Scholar
[31] Tomasi, J., & Persico, M. (1994). Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent. Chemical Reviews, 94, 2027–2094. DOI: 10.1021/cr00031a013. http://dx.doi.org/10.1021/cr00031a01310.1021/cr00031a013Search in Google Scholar
[32] Wilson, C. L. (1947). Reactions of furan compounds. VII. Thermal interconversion of 2,3-dihydrofuran and cyclopropane aldehyde. Journal of the American Chemical Society, 69, 3002–3004. DOI: 10.1021/ja01204a020. http://dx.doi.org/10.1021/ja01204a02010.1021/ja01204a020Search in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Synthesis and characterisation of a novel bi-nuclear copper2+ complex and its application as electrode-modifying agent for simultaneous voltammetric determination of dopamine and ascorbic acid
- Synthesis of ethyl-6-aminohexanoate from caprolactam and ethanol in near-critical water
- Vanadium dodecylamino phosphate: A novel efficient catalyst for synthesis of polyhydroquinolines
- Modelling and experimental validation of enantioseparation of racemic phenylalanine via a hollow fibre-supported liquid membrane
- Influence of operating conditions on performance of ceramic membrane used for water treatment
- Mercury associated with size-fractionated urban particulate matter: three years of sampling in Prague, Czech Republic
- Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes
- A new organically templated magnesium sulfate: structure, spectroscopic analysis, and thermal behaviour
- Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors
- Synthesis and photophysical properties of new Ln(III) (Ln = Eu(III), Gd(III), or Tb(III)) complexes of 1-amidino-O-methylurea
- Polycarbonate-based polyurethane elastomers: temperature-dependence of tensile properties
- Synthesis of a disulfide functionalized diacetylenic derivative of carbazole as building-block of polymerizable self-assembled monolayers
- Properties of poly(lactic acid-co-glycolic acid) film modified by blending with polyurethane
- Determination of 10B in lymphoma human cells after boron carrier treatment: comparison of 10BPA and immuno-nanoparticles
- Molecular modelling and spectral investigation of some triphenyltetrazolium chloride derivatives
- X-ray molecular structure and theoretical study of 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl]benzene
- 1,3-Dipolar cycloaddition between substituted phenyl azide and 2,3-dihydrofuran
Articles in the same Issue
- Synthesis and characterisation of a novel bi-nuclear copper2+ complex and its application as electrode-modifying agent for simultaneous voltammetric determination of dopamine and ascorbic acid
- Synthesis of ethyl-6-aminohexanoate from caprolactam and ethanol in near-critical water
- Vanadium dodecylamino phosphate: A novel efficient catalyst for synthesis of polyhydroquinolines
- Modelling and experimental validation of enantioseparation of racemic phenylalanine via a hollow fibre-supported liquid membrane
- Influence of operating conditions on performance of ceramic membrane used for water treatment
- Mercury associated with size-fractionated urban particulate matter: three years of sampling in Prague, Czech Republic
- Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes
- A new organically templated magnesium sulfate: structure, spectroscopic analysis, and thermal behaviour
- Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors
- Synthesis and photophysical properties of new Ln(III) (Ln = Eu(III), Gd(III), or Tb(III)) complexes of 1-amidino-O-methylurea
- Polycarbonate-based polyurethane elastomers: temperature-dependence of tensile properties
- Synthesis of a disulfide functionalized diacetylenic derivative of carbazole as building-block of polymerizable self-assembled monolayers
- Properties of poly(lactic acid-co-glycolic acid) film modified by blending with polyurethane
- Determination of 10B in lymphoma human cells after boron carrier treatment: comparison of 10BPA and immuno-nanoparticles
- Molecular modelling and spectral investigation of some triphenyltetrazolium chloride derivatives
- X-ray molecular structure and theoretical study of 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl]benzene
- 1,3-Dipolar cycloaddition between substituted phenyl azide and 2,3-dihydrofuran