Home Life Sciences Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors
Article
Licensed
Unlicensed Requires Authentication

Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors

  • Sudheesh Shukla EMAIL logo , Eric Agorku , Hemant Mittal and Ajay Mishra
Published/Copyright: October 30, 2013
Become an author with De Gruyter Brill

Abstract

The present study involves the synthesis of Ce3+ doped ZnO nanophosphors by the zinc nitrate and cerium nitrate co-precipitation method. The synthesized nanophosphors were characterized with respect to their crystal structure, crystal morphology, particle size and photoluminescence (PL) properties using X-ray diffraction (XRD), scanning electron microscopy (SEM)/energy dispersive X-ray (EDX), transmission electron microscopy (TEM)/Energy-dispersive X-ray spectroscopy (EDS) and PL-spectroscopy respectively. XRD results revealed that ZnO nanophosphors are single phase and cubic type structures. Further, PL spectra of ZnO:Ce3+ nanophosphors showed green emission because of the charge transfer at single occupied oxygen vacancies with ZnO holes and red emission due to the cerium ion transitions. Intensity and fine structure of the Ce3+ luminescence and its temperature dependence are strongly influenced by the doping conditions. The formation of ZnO:Ce3+ nanophosphors was confirmed by Fourier transform infrared (FTIR) and XRD spectra.

[1] Cruz-Vázquez, C., Bernal, R., Burruel-Ibarra, S. E., Grijalva-Monteverde, H.,& Barboza-Flores, M. (2005). Thermoluminescence properties of new ZnO nanophosphors exposed to beta irradiation. Optical Materials, 27, 1235–1239. DOI: 10.1016/j.optmat.2004.11.016. http://dx.doi.org/10.1016/j.optmat.2004.11.01610.1016/j.optmat.2004.11.016Search in Google Scholar

[2] Djelloul, A., Aida, M. S.,& Bougdira, J. (2010). Photoluminescence, FTIR and X-ray diffraction studies on undoped and Al-doped ZnO thin films grown on polycrystalline α-alumina substrates by ultrasonic spray pyrolysis. Journal of Luminescence, 130, 2113–2117. DOI: 10.1016/j.jlumin.2010.06.002. http://dx.doi.org/10.1016/j.jlumin.2010.06.00210.1016/j.jlumin.2010.06.002Search in Google Scholar

[3] Hauschild, R., Priller, H., Decker, M., Brückner, J., Kalt, H.,& Klingshirn, C. (2006). Temperature dependent band gap and homogeneous line broadening of the exciton emission in ZnO. Physica Status Solidi (C), 3, 976–979. DOI: 10.1002/pssc.200564643. http://dx.doi.org/10.1002/pssc.20056464310.1002/pssc.200564643Search in Google Scholar

[4] Jattukul, S., Thongtem, S.,& Thongtem, T. (2011). Morphology development of ZnO produced by sonothermal process. Ceramics International, 37, 2055–2059. DOI: 10.1016/j.ceramint.2011.02.019. http://dx.doi.org/10.1016/j.ceramint.2011.02.01910.1016/j.ceramint.2011.02.019Search in Google Scholar

[5] Kaschner, A., Haboeck, U., Strassburg, M., Strassburg, M., Kaczmarczyk, G., Hoffmann, A., Thomsen, C., Zeuner, A., Alves, H. R., Hofmann, D. M.,& Meyer, B. K. (2002). Nitrogen-related local vibrational modes in ZnO:N. Applied Physics Letters, 80, 1909–1911. DOI: 10.1063/1.1461903. http://dx.doi.org/10.1063/1.146190310.1063/1.1461903Search in Google Scholar

[6] Klingshirn, C. (2007a). ZnO: Material, physics and applications. ChemPhysChem, 8, 782–803. DOI: 10.1002/cphc.200700002. http://dx.doi.org/10.1002/cphc.20070000210.1002/cphc.200700002Search in Google Scholar PubMed

[7] Klingshirn, C. (2007b). ZnO: From basics towards applications. Physica Status Solidi (B), 244, 3027–3073. DOI: 10.1002/pssb.200743072. http://dx.doi.org/10.1002/pssb.20074307210.1002/pssb.200743072Search in Google Scholar

[8] Klingshirn, C., Hauschild, R., Fallert, J.,& Kalt, H. (2007). Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing. Physical Review B, 75, 115203. DOI: 10.1103/physrevb.75.115203. http://dx.doi.org/10.1103/PhysRevB.75.11520310.1103/PhysRevB.75.115203Search in Google Scholar

[9] Kumar, V., Mishra, V., Biggs, M. M., Nagpure, I. M., Ntwaeaborwa, O. M., Terblans, J. J.,& Swart, H. C. (2010). Electron beam induced green luminescence and degradation study of CaS:Ce nanocrystalline phosphors for FED applications. Applied Surface Science, 256, 1720–1724. DOI:10.1016/j.apsusc.2009.09.101. http://dx.doi.org/10.1016/j.apsusc.2009.09.10110.1016/j.apsusc.2009.09.101Search in Google Scholar

[10] Kumaran, S. M.,& Gopalakrishnan, R. (2012). Structural, optical and photoluminescence properties of Zn1−x CexO (x = 0, 0.05 and 0.1) nanoparticles by sol-gel method annealed under Ar atmosphere. Journal of Sol-Gel Science and Technology, 62, 193–200. DOI: 10.1007/s10971-012-2708-8. http://dx.doi.org/10.1007/s10971-012-2708-810.1007/s10971-012-2708-8Search in Google Scholar

[11] Li, Z. Q., Xiong, Y. J.,& Xie, Y. (2003). Selected-control synthesis of ZnO nanowires and nanorods via a PEGassisted route. Inorganic Chemistry, 42, 8105–8109. DOI: 10.1021/ic034029q. http://dx.doi.org/10.1021/ic034029q10.1021/ic034029qSearch in Google Scholar

[12] Maciel, A. V., da Nova Mussel, W.,& Pasa, V. M. D. (2010). A novel synthesis of nanostructured ZnO via thermal oxidation of Zn nanowires obtained by a green route. Materials Sciences and Applications, 1, 279–284. DOI:10.4236/msa.2010.15041. http://dx.doi.org/10.4236/msa.2010.1504110.4236/msa.2010.15041Search in Google Scholar

[13] Manam, J., Das, S.,& Isaac, A. (2009). Preparation, characterization and thermally stimulated luminescence of ZnO nanophosphor. Indian Journal of Physics, 83, 1407–1419. DOI: 10.1007/s12648-009-0129-5. http://dx.doi.org/10.1007/s12648-009-0129-510.1007/s12648-009-0129-5Search in Google Scholar

[14] Moghaddam, A. B., Nazari, T., Badraghi, J.,& Kazemzad, M. (2009). Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite films. International Journal of Electrochemical Science, 4, 247–257. Search in Google Scholar

[15] Murray, C. B., Norris, D. J.,& Bawendi, M. G. (1993). Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 115, 8706–8715. DOI: 10.1021/ja00072a025. http://dx.doi.org/10.1021/ja00072a02510.1021/ja00072a025Search in Google Scholar

[16] Nalwa, H. S., & Rohwer, L. S. (2003). Handbook of luminescence, display materials, and devices: Inorganic display. California, CA, USA: American Scientific Publishers. Search in Google Scholar

[17] Patra, A.,& Ganguli, D. (1992). Paramagnetic centers in unirradiated boron-doped silica gel. Journal of Non-Crystalline Solids, 144, 111–113. DOI: 10.1016/s0022-3093(05)80391-6. http://dx.doi.org/10.1016/S0022-3093(05)80391-610.1016/S0022-3093(05)80391-6Search in Google Scholar

[18] Reisfeld, R., Patra, A., Panczer, G.,& Gaft, M. (1999). Spectroscopic properties of cerium in sol-gel glasses. Optical Materials, 13, 81–88. DOI: 10.1016/s0925-3467(99)00015-4. http://dx.doi.org/10.1016/S0925-3467(99)00015-410.1016/S0925-3467(99)00015-4Search in Google Scholar

[19] Shukla, S. K., Deshpande, S. R., Shukla, S. K.,& Tiwari, A. (2012). Fabrication of a tunable glucose biosensor based on zinc oxide/chitosan-graft-poly(vinyl alcohol) core-shell nanocomposite. Talanta, 99, 283–287. DOI: 10.1016/j.talanta.2012.05.052. http://dx.doi.org/10.1016/j.talanta.2012.05.05210.1016/j.talanta.2012.05.052Search in Google Scholar

[20] Turos-Matysiak, R., Gryk, W., Grinberg, M., Lin, Y. S.,& Liu, R. S. (2006). Tb3+ → Ce3+ energy transfer in Ce3+-doped Y3−x TbxGd0.65Al5O12. Journal of Physics: Condensed Matter, 18, 10531. DOI: 10.1088/0953-8984/18/47/001. http://dx.doi.org/10.1088/0953-8984/18/47/00110.1088/0953-8984/18/47/001Search in Google Scholar

[21] van Dijken, A., Meulenkamp, E. A., Vanmaekelbergh, D., & Meijerink, A. (2000). Identification of the transition responsible for the visible emission in ZnO using quantum size effects. Journal of Luminescence, 90, 123–128. DOI: 10.1016/s0022-2313(99)00599-2. http://dx.doi.org/10.1016/S0022-2313(99)00599-210.1016/S0022-2313(99)00599-2Search in Google Scholar

[22] Wu, J. L., Gundiah, G.,& Cheetham, A. K. (2007). Structure-property correlations in Ce-doped garnet phosphors for use in solid state lighting. Chemical Physics Letters, 441, 250–254. DOI:10.1016/j.cplett.2007.05.023. http://dx.doi.org/10.1016/j.cplett.2007.05.02310.1016/j.cplett.2007.05.023Search in Google Scholar

[23] Xiong, G., Pal, U., Serrano, J. G., Ucer, K. B., & Williams, R. T. (2006). Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective. Physica Status Solidi (C), 3, 3577–3581. DOI:10.1002/pssc.200672164. http://dx.doi.org/10.1002/pssc.20067216410.1002/pssc.200672164Search in Google Scholar

[24] Ye, S., Xiao, F., Pan, Y. X., Ma, Y. Y.,& Zhang, Q. Y. (2010). Phosphors in phosphor-converted white lightemitting diodes: Recent advances in materials, techniques and properties. Materials Science and Engineering: R: Reports, 71, 1–34. DOI:10.1016/j.mser.2010.07.001. http://dx.doi.org/10.1016/j.mser.2010.07.00110.1016/j.mser.2010.07.001Search in Google Scholar

[25] Zimmler, M. A., Voss, T., Ronning, C.,& Capasso, F. (2009). Exciton-related electroluminescence from ZnO nanowire light-emitting diodes. Applied Physics Letters, 94, 241120. DOI: 10.1063/1.3157274. http://dx.doi.org/10.1063/1.315727410.1063/1.3157274Search in Google Scholar

Published Online: 2013-10-30
Published in Print: 2014-2-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Synthesis and characterisation of a novel bi-nuclear copper2+ complex and its application as electrode-modifying agent for simultaneous voltammetric determination of dopamine and ascorbic acid
  2. Synthesis of ethyl-6-aminohexanoate from caprolactam and ethanol in near-critical water
  3. Vanadium dodecylamino phosphate: A novel efficient catalyst for synthesis of polyhydroquinolines
  4. Modelling and experimental validation of enantioseparation of racemic phenylalanine via a hollow fibre-supported liquid membrane
  5. Influence of operating conditions on performance of ceramic membrane used for water treatment
  6. Mercury associated with size-fractionated urban particulate matter: three years of sampling in Prague, Czech Republic
  7. Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes
  8. A new organically templated magnesium sulfate: structure, spectroscopic analysis, and thermal behaviour
  9. Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors
  10. Synthesis and photophysical properties of new Ln(III) (Ln = Eu(III), Gd(III), or Tb(III)) complexes of 1-amidino-O-methylurea
  11. Polycarbonate-based polyurethane elastomers: temperature-dependence of tensile properties
  12. Synthesis of a disulfide functionalized diacetylenic derivative of carbazole as building-block of polymerizable self-assembled monolayers
  13. Properties of poly(lactic acid-co-glycolic acid) film modified by blending with polyurethane
  14. Determination of 10B in lymphoma human cells after boron carrier treatment: comparison of 10BPA and immuno-nanoparticles
  15. Molecular modelling and spectral investigation of some triphenyltetrazolium chloride derivatives
  16. X-ray molecular structure and theoretical study of 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl]benzene
  17. 1,3-Dipolar cycloaddition between substituted phenyl azide and 2,3-dihydrofuran
Downloaded on 21.12.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0442-5/html
Scroll to top button