Startseite Lebenswissenschaften Mercury associated with size-fractionated urban particulate matter: three years of sampling in Prague, Czech Republic
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mercury associated with size-fractionated urban particulate matter: three years of sampling in Prague, Czech Republic

  • Ondřej Zvěřina EMAIL logo , Pavel Coufalík , Josef Komárek , Petr Gadas und Jiřina Sysalová
Veröffentlicht/Copyright: 30. Oktober 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

An analysis of suspended particulate matter, with an emphasis on the Hg chemical forms, is presented. Dust samples originating from an area highly affected by traffic pollution in the city of Prague (Czech Republic) were sampled over a period of three years from air-conditioner filters and fractioned by size. The samples were morphologically characterised by scanning electron microscopy. The main method used for the analysis of constituent mercury compounds was sequential extraction by leaching solutions in combination with thermal desorption. The total mercury content ranged from 0.37 mg kg−1 to 0.82 mg kg−1. It emerged that the mercury was distributed in a wide spectrum of forms, and various trends in the distribution of these forms among the different size classes were observed. The fraction leached by nitric acid (consisting of elemental and complex-bound mercury) was the main constituent of total mercury. The highest content of this fraction was observed in the finest particle size class. The heterogeneity of morphology of the material increased with the size fraction.

[1] Bartels, R. (1982). The rank version of von Neumann’s ratio test for randomness. Journal of the American Statistical Association, 77(377), 40–46. DOI: 10.1080/01621459.1982.10477764. http://dx.doi.org/10.1080/01621459.1982.1047776410.1080/01621459.1982.10477764Suche in Google Scholar

[2] Bloom, N. S., Preus, E., Katon, J., & Hiltner, M. (2003). Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Analytica Chimica Acta, 479, 233–248. DOI: 10.1016/s0003-2670(02)01550-7. http://dx.doi.org/10.1016/S0003-2670(02)01550-710.1016/S0003-2670(02)01550-7Suche in Google Scholar

[3] Coufalík, P., Krásenský, P., Dosbaba, M., & Komárek, J. (2012). Sequential extraction and thermal desorption of mercury from contaminated soil and tailings from Mongolia. Central European Journal of Chemistry, 10, 1565–1573. DOI: 10.2478/s11532-012-0074-6. http://dx.doi.org/10.2478/s11532-012-0074-610.2478/s11532-012-0074-6Suche in Google Scholar

[4] Keeler, G., Glinsorn, G., & Pirrone, N. (1995). Particulate mercury in the atmosphere: Its significance, transport, transformation and sources. Water, Air, and Soil Pollution, 80, 159–168. DOI: 10.1007/bf01189664. http://dx.doi.org/10.1007/BF0118966410.1007/BF01189664Suche in Google Scholar

[5] Lin, C. J., & Pehkonen, S. O. (1999). The chemistry of atmospheric mercury: a review. Atmospheric Environment, 33, 2067–2079. DOI: 10.1016/s1352-2310(98)00387-2. http://dx.doi.org/10.1016/S1352-2310(98)00387-210.1016/S1352-2310(98)00387-2Suche in Google Scholar

[6] Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X. B., Fitzgerald, W., Pirrone, N., Prestbo, E., & Seigneur, C. (2007). A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. AMBIO: A Journal of the Human Environment, 36, 19–33. DOI: 10.1579/0044-7447(2007)36[19:ASOPAU]2.0.CO;2. http://dx.doi.org/10.1579/0044-7447(2007)36[19:ASOPAU]2.0.CO;2Suche in Google Scholar

[7] Mason, R. P., Fitzgerald, W. F., & Morel, F. M. M. (1994). The biogeochemical cycling of elemental mercury: Anthropogenic influences. Geochimica et Cosmochimica Acta, 58, 3191–3198. DOI: 10.1016/0016-7037(94)90046-9. http://dx.doi.org/10.1016/0016-7037(94)90046-910.1016/0016-7037(94)90046-9Suche in Google Scholar

[8] Nóvoa-Muñoz, J. C., Pontevedra-Pombal, X., Martínez-Cortizas, A., & García-Rodeja Gayoso, E. (2008). Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in Southwest Europe (Galicia, NW Spain). Science of the Total Environment, 394, 303–312. DOI: 10.1016/j.scitotenv.2008.01.044. http://dx.doi.org/10.1016/j.scitotenv.2008.01.04410.1016/j.scitotenv.2008.01.044Suche in Google Scholar

[9] Olivieri, G., Novakovic, M., Savaskan, E., Meier, F., Baysang, G., Brockhaus, M., & Müller-Spahn, F. (2002). The effects of β-estradiol on SHSY5Y neuroblastoma cells during heavy metal induced oxidative stress, neurotoxicity and β-amyloid secretion. Neuroscience, 113, 849–855. DOI: 10.1016/s0306-4522(02)00211-7. http://dx.doi.org/10.1016/S0306-4522(02)00211-710.1016/S0306-4522(02)00211-7Suche in Google Scholar

[10] Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., & Wilson, S. (2006). Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40, 4048–4063. DOI: 10.1016/j.atmosenv.2006.03.041. http://dx.doi.org/10.1016/j.atmosenv.2006.03.04110.1016/j.atmosenv.2006.03.041Suche in Google Scholar

[11] Pacyna, E. G., Pacyna, J. M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen, F., & Maxson, P. (2010). Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment, 44, 2487–2499. DOI: 10.1016/j.atmosenv.2009.06.009. http://dx.doi.org/10.1016/j.atmosenv.2009.06.00910.1016/j.atmosenv.2009.06.009Suche in Google Scholar

[12] Pandey, S. K., Kim, K. H., & Brown, R. J. C (2011). Measurement techniques for mercury species in ambient air. TrAC Trends in Analytical Chemistry, 30, 899–917. DOI: 10.1016/j.trac.2011.01.017. http://dx.doi.org/10.1016/j.trac.2011.01.01710.1016/j.trac.2011.01.017Suche in Google Scholar

[13] Petersen, G., Munthe, J., Pleijel, K., & Bloxam, R., & Vinod Kumar, A. (1998). A comprehensive Eulerian modeling framework for airborne mercury species: Development and testing of the Tropospheric Chemistry Module (TCM). Atmospheric Environment, 32, 829–843. DOI: 10.1016/s1352-2310(97)00049-6. http://dx.doi.org/10.1016/S1352-2310(97)00049-610.1016/S1352-2310(97)00049-6Suche in Google Scholar

[14] Pirrone, N., & Mason, R. (Eds.) (2009). Mercury fate and transport in the global atmosphere. Dordrecht, The Netherlands: Springer. DOI: 10.1007/978-0-387-93958-2. 10.1007/978-0-387-93958-2Suche in Google Scholar

[15] Pleijel, K., & Munthe, J. (1995). Modelling the atmospheric mercury cycle-chemistry in fog droplets. Atmospheric Environment, 29, 1441–1457. DOI: 10.1016/1352-2310(94)00323-d. http://dx.doi.org/10.1016/1352-2310(95)00226-O10.1016/1352-2310(94)00323-DSuche in Google Scholar

[16] Schroeder, W. H., & Munthe, J. (1998). Atmospheric mercury-An overview. Atmospheric Environment, 32, 809–822. DOI: 10.1016/s1352-2310(97)00293-8. http://dx.doi.org/10.1016/S1352-2310(97)00293-810.1016/S1352-2310(97)00293-8Suche in Google Scholar

[17] Seigneur, C., Abeck, H., Chia, G., Reinhard, M., Bloom, N. S., Prestbo, E., & Saxena, P. (1998). Mercury adsorption to elemental carbon (soot) particles and atmospheric particulate matter. Atmospheric Environment, 32, 2649–2657. DOI: 10.1016/s1352-2310(97)00415-9. http://dx.doi.org/10.1016/S1352-2310(97)00415-910.1016/S1352-2310(97)00415-9Suche in Google Scholar

[18] Sysalová, J., Sýkorová, I., Havelcová, M., Száková, J., Trejtnarová, H., & Kotlík, B. (2012). Toxicologically important trace elements and organic compounds investigated in sizefractionated urban particulate matter collected near the Prague highway. Science of the Total Environment, 437, 127–136. DOI: 10.1016/j.scitotenv.2012.07.030. http://dx.doi.org/10.1016/j.scitotenv.2012.07.03010.1016/j.scitotenv.2012.07.030Suche in Google Scholar

[19] Wängberg, I., Munthe, J., Pirrone, N., Iverfeldt, Å., Bahlman, E., Costa, P., Ebinghaus, R., Feng, X., Ferrara, R., Gårdfeldt, K., Kock, H., Lanzillotta, E., Mamane, Y., Mas, F., Melamed, E., Osnat, Y., Prestbo, E., Sommar, J., Schmolke, S., Spain, G., Sprovieri, F., & Tuncel, G. (2001). Atmospheric mercury distribution in Northern Europe and in the Mediterranean region. Atmospheric Environment, 35, 3019–3025. DOI: 10.1016/s1352-2310(01)00105-4. http://dx.doi.org/10.1016/S1352-2310(01)00105-410.1016/S1352-2310(01)00105-4Suche in Google Scholar

[20] Zahir, F., Rizwi, S. J., Haq, S. K., & Khan, R. H. (2005). Low dose mercury toxicity and human health. Environmental Toxicology and Pharmacology, 20, 351–360. DOI: 10.1016/j.etap.2005.03.007. http://dx.doi.org/10.1016/j.etap.2005.03.00710.1016/j.etap.2005.03.007Suche in Google Scholar PubMed

[21] Zvěřina, O., Červenka, R., Komárek, J., & Sysalová, J. (2013). Mercury characterisation in urban particulate matter. Chemical Papers, 67, 186–193. DOI: 10.2478/s11696-012-0259-7. http://dx.doi.org/10.2478/s11696-012-0259-710.2478/s11696-012-0259-7Suche in Google Scholar

Published Online: 2013-10-30
Published in Print: 2014-2-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Synthesis and characterisation of a novel bi-nuclear copper2+ complex and its application as electrode-modifying agent for simultaneous voltammetric determination of dopamine and ascorbic acid
  2. Synthesis of ethyl-6-aminohexanoate from caprolactam and ethanol in near-critical water
  3. Vanadium dodecylamino phosphate: A novel efficient catalyst for synthesis of polyhydroquinolines
  4. Modelling and experimental validation of enantioseparation of racemic phenylalanine via a hollow fibre-supported liquid membrane
  5. Influence of operating conditions on performance of ceramic membrane used for water treatment
  6. Mercury associated with size-fractionated urban particulate matter: three years of sampling in Prague, Czech Republic
  7. Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes
  8. A new organically templated magnesium sulfate: structure, spectroscopic analysis, and thermal behaviour
  9. Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors
  10. Synthesis and photophysical properties of new Ln(III) (Ln = Eu(III), Gd(III), or Tb(III)) complexes of 1-amidino-O-methylurea
  11. Polycarbonate-based polyurethane elastomers: temperature-dependence of tensile properties
  12. Synthesis of a disulfide functionalized diacetylenic derivative of carbazole as building-block of polymerizable self-assembled monolayers
  13. Properties of poly(lactic acid-co-glycolic acid) film modified by blending with polyurethane
  14. Determination of 10B in lymphoma human cells after boron carrier treatment: comparison of 10BPA and immuno-nanoparticles
  15. Molecular modelling and spectral investigation of some triphenyltetrazolium chloride derivatives
  16. X-ray molecular structure and theoretical study of 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl]benzene
  17. 1,3-Dipolar cycloaddition between substituted phenyl azide and 2,3-dihydrofuran
Heruntergeladen am 21.12.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0436-3/html
Button zum nach oben scrollen