Abstract
This paper reports on the enantioseparation of racemic phenylalanine or D-phenylalanine and Lphenylalanine via a hollow fibre-supported liquid membrane (HFSLM) and the results are compared with the mathematical model. The enantioseparation results, of 80 % and 73 %, showed the highest extraction and stripping of l-phenylalanine from the feed phase and the enantiomeric excess (% ee) of 60 % from 6 mmol L−1 of initial rac-phenylalanine in the feed solution. The optimum parameters were feed solution at pH 5, 6 mmol LL−1 of O,O′-dibenzoyl-(2S,3S)-tartaric acid ((+)-DBTA) as the extractant in octanol as the liquid membrane, and deionised water as the stripping solution. Equal flow-rates of feed and stripping solutions of 100 mL minL−1 were adjusted in a batch operation mode for 50 min at ambient temperature. From the calculation, the equilibrium constants of extraction (K ex) and mass transfer coefficients in the feed phase (k f) and in the liquid membrane phase (k m) were found to be 1.81 L mmol−2, 3.50 × 10−2 cm s−1, and 1.40 × 10−2 cm s−1, respectively. Finally, the change in concentrations of d,l-phenylalanine over time in the feed and stripping solutions by mathematical model were estimated and compared with the experimental results. The values thus calculated were in agreement with the experimental data with the average deviation of approximately 3 %.
[1] Agranat, I., Caner, H.,& Caldwell, J. (2002). Putting chirality to work: the strategy of chiral switches. Nature Reviews Drug Discovery, 1, 753–768. DOI: 10.1038/nrd915. http://dx.doi.org/10.1038/nrd91510.1038/nrd915Search in Google Scholar
[2] Choi, J. W., Cho, K. S., Ko, S. K., Youn, I. J.,& Lee, W. H. (1998). Separation and concentration of L-phenylalanine using a supported liquid membrane. Biotechnology and Bioprocess Engineering, 3, 24–31. DOI: 10.1007/bf02932479. http://dx.doi.org/10.1007/BF0293247910.1007/BF02932479Search in Google Scholar
[3] Christianson, D. W., Mangani, S., Shoham, G.,& Lipscomb, W. N. (1989). Binding of D-phenylalanine and D-tyrosine to carboxypeptidase A. The Journal of Biological Chemistry, 264, 12849–12853. 10.1016/S0021-9258(18)51564-7Search in Google Scholar
[4] Coelhoso, I. M., Cardoso, M. M., Viegas, R. M. C.,& Crespo, J. P. S. G. (2000). Transport mechanisms and modelling in liquid membrane contactors. Separation and Purification Technology, 19, 183–197. DOI: 10.1016/s1383-5866(00)00051-4. http://dx.doi.org/10.1016/S1383-5866(00)00051-410.1016/S1383-5866(00)00051-4Search in Google Scholar
[5] Danesi, P. R. (1984). A simplified model for the coupled transport of metal ions through hollow-fiber supported liquid membranes. Journal of Membrane Science, 20, 231–248. DOI: 10.1016/s0376-7388(00)82001-3. http://dx.doi.org/10.1016/S0376-7388(00)82001-310.1016/S0376-7388(00)82001-3Search in Google Scholar
[6] Field, R.W. (1996) Mass transport and the design of membrane systems. In K. Scott, & R. Hughes (Eds.), Industrial membrane separation technology (pp. 81). Glasgow, UK: Blackie Academic & Professional. 10.1007/978-94-011-0627-6_4Search in Google Scholar
[7] Giorno, L.,& Drioli, E. (1999). Enantiospecific membrane processes. Membrane Technology, 1999(106), 6–11. DOI: 10.1016/s0958-2118(00)80144-5. http://dx.doi.org/10.1016/S0958-2118(00)80144-510.1016/S0958-2118(00)80144-5Search in Google Scholar
[8] Hadik, P., Kotsis, L., Eniszné-Bódogh, M., Szabó, L. P.,& Nagy, E. (2005). Lactic acid enantioseparation by means of porous ceramic disc and hollow fiber organic membrane. Separation and Purification Technology, 41, 299–304. DOI: 10.1016/j.seppur.2004.03.020. http://dx.doi.org/10.1016/j.seppur.2004.03.02010.1016/j.seppur.2004.03.020Search in Google Scholar
[9] Huang, D. S., Huang, K. L., Chen, S. P., Liu, S. Q.,& Yu, J. G. (2008). Rapid reaction-diffusion model for the enantioseparation of phenylalanine across hollow fiber supported liquid membrane. Separation Science and Technology, 43, 259–272. DOI: 10.1080/01496390701787057. http://dx.doi.org/10.1080/0149639070178705710.1080/01496390701787057Search in Google Scholar
[10] IUPAC-IUBMB (International Union of Pure and Applied Chemistry-International Union of Biochemistry and Molecular Biology) (2007). Organic and biochemical nomenclature: Symbols and terminology. Research Triangle Park, NC, USA: International Union of Pure and Applied Chemistry. Search in Google Scholar
[11] Juang, R. S.,& Wang, Y. Y. (2002). Amino acid separation with D2EHPA by solvent extraction and liquid surfactant membranes. Journal of Membrane Science, 207, 241–252. DOI: 10.1016/s0376-7388(02)00254-5. http://dx.doi.org/10.1016/S0376-7388(02)00254-510.1016/S0376-7388(02)00254-5Search in Google Scholar
[12] Keurentjes, J. T. F., Nabuurs, L. J. W. M.,& Vegter, E. A. (1996). Liquid membrane technology for the separation of racemic mixtures. Journal of Membrane Science, 113, 351–360. DOI: 10.1016/0376-7388(95)00176-x. http://dx.doi.org/10.1016/0376-7388(95)00176-X10.1016/0376-7388(95)00176-XSearch in Google Scholar
[13] Li, D. C., Cheng, S. W., Wei, D. Z., Ren, Y. H.,& Zhang, D. R. (2007a). Production of enantiomerically pure (S)-β-phenylalanine and (R)-β-phenylalanine by penicillin G acylase from Escherichia coli in aqueous medium. Biotechnology Letters, 29, 1825–1830. DOI: 10.1007/s10529-007-9480-9. http://dx.doi.org/10.1007/s10529-007-9480-910.1007/s10529-007-9480-9Search in Google Scholar PubMed
[14] Li, M. S., Zhao, Y. J., Zhao, S. Y., Xing W. H., & Wong, F. S. (2007b). Resistance analysis for ceramic membrane microfiltration of raw soy sauce. Journal of Membrane Science, 299, 122–129. DOI: 10.1016/j.memsci.2007.04.033. http://dx.doi.org/10.1016/j.memsci.2007.04.03310.1016/j.memsci.2007.04.033Search in Google Scholar
[15] Lin, S. H.,& Chen, C. N. (2006). Simultaneous reactive extraction separation of amino acids from water with D2EHPA in hollow fiber contactors. Journal of Membrane Science, 280, 771–780. DOI: 10.1016/j.memsci.2006.02.034. http://dx.doi.org/10.1016/j.memsci.2006.02.03410.1016/j.memsci.2006.02.034Search in Google Scholar
[16] Liu, Y. S., Dai, Y. Y.,& Wang, J. D. (1999). Distribution behavior of L-phenylalanine by extraction with di(2-ethylhexyl) phosphoric acid. Separation Science and Technology, 34, 2165–2176. DOI: 10.1081/ss-100100763. http://dx.doi.org/10.1081/SS-10010076310.1081/SS-100100763Search in Google Scholar
[17] Lothongkum, A. W., Khemglad, Y., Usomboon, N., & Pancharoen, U. (2009a). Selective recovery of nickel ions from wastewater of stainless steel industry via HFSLM. Journal of Alloys and Compounds, 476, 940–949. DOI: 10.1016/j. jallcom.2008.09.194. http://dx.doi.org/10.1016/j.jallcom.2008.09.19410.1016/j.jallcom.2008.09.194Search in Google Scholar
[18] Lothongkum, A. W., Ramakul, P., Sasomsub, W., Laoharochanapan, S., & Pancharoen, U. (2009b). Enhancement of uranium ion flux by consecutive extraction via hollow fiber supported liquid membrane. Journal of the Taiwan Institute of Chemical Engineers, 40, 518–523. DOI: 10.1016/j.jtice.2009.03.010. http://dx.doi.org/10.1016/j.jtice.2009.03.01010.1016/j.jtice.2009.03.010Search in Google Scholar
[19] Lothongkum, A. W., Pancharoen, U., & Prapasawat, T. (2011a). Roles of facilitated transport through HFSLM in engineering applications. In J. Markoš (Ed.), Mass transfer in chemical engineering processes (chapter 9, pp. 177–204). Rijeka, Croatia: InTech Europe. DOI: 10.5772/24343. 10.5772/24343Search in Google Scholar
[20] Lothongkum, A. W., Pancharoen, U., & Prapasawat, T. (2011b). Treatment of heavy metals from industrial wastewaters using hollow fiber supported liquid membrane. In K. Demadis (Ed.), Water treatment processes (chapter 12, pp. 299–332). New York, NY, USA: Nova Science Publishers. Search in Google Scholar
[21] Mulder, M. H. V. (1995). Polarization phenomena and membrane fouling. In R. D. Noble, & S. A. Stern (Eds.), Membrane separations technology: Principles and applications (chapter 2, pp. 49–50). Amsterdam, The Netherlands: Elsevier. Search in Google Scholar
[22] Naksang, C., Sunsandee, N., Thamphiphit, N., Pancharoen, U., Ramakul, P.,& Leepipatpiboon, N. (2013). Synergistic enantioseparation of rac-phenylalanine via hollow fiber supported liquid membrane. Separation Science and Technology, 48, 867–876. DOI: 10.1080/01496395.2012.719255. http://dx.doi.org/10.1080/01496395.2012.71925510.1080/01496395.2012.719255Search in Google Scholar
[23] Pancharoen, U., Wongsawa, T.,& Lothongkum, A. W. (2011). A reaction flux model for extraction of Cu(II) with LIX84I in HFSLM. Separation Science and Technology, 46, 2183–2190. DOI: 10.1080/01496395.2011.595287. http://dx.doi.org/10.1080/01496395.2011.59528710.1080/01496395.2011.595287Search in Google Scholar
[24] Pardridge, W. M. (2005). The blood-brain barrier: Bottleneck in brain drug development. NeuroRx, 2, 3–14. DOI: 10.1602/neurorx.2.1.3. http://dx.doi.org/10.1602/neurorx.2.1.310.1602/neurorx.2.1.3Search in Google Scholar
[25] Rathore, N. S., Sonawane, J. V., Kumar, A., Venugopalan, A. K., Singh, R. K., Bajpai, D. D.,& Shukla, J. P. (2001). Hollow fiber supported liquid membrane: a novel technique for separation and recovery of plutonium from aqueous acidic wastes. Journal of Membrane Science, 189, 119–128. DOI: 10.1016/s0376-7388(01)00406-9. http://dx.doi.org/10.1016/S0376-7388(01)00406-910.1016/S0376-7388(01)00406-9Search in Google Scholar
[26] Rogers, J. D.,& Long, R. L., Jr. (1997). Modeling hollow fiber membrane contactors using film theory, Voronoi tessellations, and facilitation factors for systems with interface reactions. Journal of Membrane Science, 134, 1–17. DOI: 10.1016/s0376-7388(97)00074-4. http://dx.doi.org/10.1016/S0376-7388(97)00074-410.1016/S0376-7388(97)00074-4Search in Google Scholar
[27] Saïdat, B., Boudah, F.,& Guermouche, M. H. (2010). High performance liquid chromatography chiral separation of d,l-phenylalanine and d,l-tryptophan with quaternary mobile phase mixture by copper mixed chelate complexation. Analele Universitatii din Bucuresti: Chimie, 19(2), 77–82. Search in Google Scholar
[28] Sprenger, G. A. (2007). Aromatic amino acids. In V. F. Wendisch (Ed.), Amino acid biosynthesis: Pathways, regulation and metabolic engineering (pp. 106–113). New York, NY, USA: Springer. DOI: 10.1007/7171 2006 067. Search in Google Scholar
[29] Sunsandee, N., Leepipatpiboon, N., Ramakul, P.,& Pancharoen, U. (2012). The selective separation of (S)-amlodipine via a hollow fiber supported liquid membrane: Modeling and experimental verification. Chemical Engineering Journal, 180, 299–308. DOI: 10.1016/j.cej.2011.11.068. http://dx.doi.org/10.1016/j.cej.2011.11.06810.1016/j.cej.2011.11.068Search in Google Scholar
[30] Suren, S., Wongsawa, T., Pancharoen, U., Prapasawat, T.,& Lothongkum, A. W. (2012). Uphill transport and mathematical model of Pb(II) from dilute synthetic lead-containing solutions across hollow fiber supported liquid membrane. Chemical Engineering Journal, 191, 503–511. DOI: 10.1016/j.cej.2012.03.010. http://dx.doi.org/10.1016/j.cej.2012.03.01010.1016/j.cej.2012.03.010Search in Google Scholar
[31] Tan, B., Luo, G. S., Qi, X.,& Wang, J. D. (2006). Enantioselective extraction of d,l-tryptophan by a new chiral selector: Complex formation with di(2-ethylhexyl)phosphoric acid and O,O′-dibenzoyl-(2R,3R)-tartaric acid. Separation and Purification Technology, 49, 186–191. DOI: 10.1016/j.seppur.2005.09.010. http://dx.doi.org/10.1016/j.seppur.2005.09.01010.1016/j.seppur.2005.09.010Search in Google Scholar
[32] Tan, B., Luo, G. S.,& Wang, J. D. (2007). Extractive separation of amino acid enantiomers with co-extractants of tartaric acid derivative and Aliquat-336. Separation and Purification Technology, 53, 330–336. DOI: 10.1016/j.seppur.2006.08.021. http://dx.doi.org/10.1016/j.seppur.2006.08.02110.1016/j.seppur.2006.08.021Search in Google Scholar
[33] USFDA (1992). FDA’s policy statement for the development of new stereoisomeric drugs. Chirality, 4, 338–340. DOI: 10.1002/chir.530040513. http://dx.doi.org/10.1002/chir.53004051310.1002/chir.530040513Search in Google Scholar PubMed
[34] Voet, D., & Voet, J. G. (1990). Biochemistry (chapter 4). New York, NY, USA: Wiley. Search in Google Scholar
[35] Wan, Y. H., Luo, J. Q., & Cui, Z. F. (2010). Membrane application in soy sauce processing. In Z. F. Ciu, & H. S. Muralidhara (Eds.), Membrane technology: A practical guide to membrane technology and applications in food and bioprocessing (chapter 4, pp. 51). Burlington, MA, USA: Butterworth-Heinemann. Search in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Synthesis and characterisation of a novel bi-nuclear copper2+ complex and its application as electrode-modifying agent for simultaneous voltammetric determination of dopamine and ascorbic acid
- Synthesis of ethyl-6-aminohexanoate from caprolactam and ethanol in near-critical water
- Vanadium dodecylamino phosphate: A novel efficient catalyst for synthesis of polyhydroquinolines
- Modelling and experimental validation of enantioseparation of racemic phenylalanine via a hollow fibre-supported liquid membrane
- Influence of operating conditions on performance of ceramic membrane used for water treatment
- Mercury associated with size-fractionated urban particulate matter: three years of sampling in Prague, Czech Republic
- Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes
- A new organically templated magnesium sulfate: structure, spectroscopic analysis, and thermal behaviour
- Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors
- Synthesis and photophysical properties of new Ln(III) (Ln = Eu(III), Gd(III), or Tb(III)) complexes of 1-amidino-O-methylurea
- Polycarbonate-based polyurethane elastomers: temperature-dependence of tensile properties
- Synthesis of a disulfide functionalized diacetylenic derivative of carbazole as building-block of polymerizable self-assembled monolayers
- Properties of poly(lactic acid-co-glycolic acid) film modified by blending with polyurethane
- Determination of 10B in lymphoma human cells after boron carrier treatment: comparison of 10BPA and immuno-nanoparticles
- Molecular modelling and spectral investigation of some triphenyltetrazolium chloride derivatives
- X-ray molecular structure and theoretical study of 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl]benzene
- 1,3-Dipolar cycloaddition between substituted phenyl azide and 2,3-dihydrofuran
Articles in the same Issue
- Synthesis and characterisation of a novel bi-nuclear copper2+ complex and its application as electrode-modifying agent for simultaneous voltammetric determination of dopamine and ascorbic acid
- Synthesis of ethyl-6-aminohexanoate from caprolactam and ethanol in near-critical water
- Vanadium dodecylamino phosphate: A novel efficient catalyst for synthesis of polyhydroquinolines
- Modelling and experimental validation of enantioseparation of racemic phenylalanine via a hollow fibre-supported liquid membrane
- Influence of operating conditions on performance of ceramic membrane used for water treatment
- Mercury associated with size-fractionated urban particulate matter: three years of sampling in Prague, Czech Republic
- Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes
- A new organically templated magnesium sulfate: structure, spectroscopic analysis, and thermal behaviour
- Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors
- Synthesis and photophysical properties of new Ln(III) (Ln = Eu(III), Gd(III), or Tb(III)) complexes of 1-amidino-O-methylurea
- Polycarbonate-based polyurethane elastomers: temperature-dependence of tensile properties
- Synthesis of a disulfide functionalized diacetylenic derivative of carbazole as building-block of polymerizable self-assembled monolayers
- Properties of poly(lactic acid-co-glycolic acid) film modified by blending with polyurethane
- Determination of 10B in lymphoma human cells after boron carrier treatment: comparison of 10BPA and immuno-nanoparticles
- Molecular modelling and spectral investigation of some triphenyltetrazolium chloride derivatives
- X-ray molecular structure and theoretical study of 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl]benzene
- 1,3-Dipolar cycloaddition between substituted phenyl azide and 2,3-dihydrofuran