Abstract
A novel vanadium dodecylamino phosphate was synthesised by an instant reaction between phosphoric acid and vanadyl acetylacetonoate using dodecylamine as the structure-directing agent at ambient temperature. The physicochemical characteristics of the material were investigated by a variety of analytical techniques. XRD studies revealed the presence of vanadium phosphate and hydrated vanadium phosphate phases in the framework of the material. The catalytic application of this material toward in the synthesis of polyhydroquinolines via Hantzsch condensation was investigated at ambient temperature. This method affords high yields within short reaction times. The influence of various reaction parameters such as different solvents, catalyst dosage, effect of aldehydes, and reusability was studied and a plausible mechanism proposed.
[1] Beneš, L., Melánová, K., Zima, V., Trchová, M., Čapková, P., & Koudelka, B. (2006). Vanadyl phosphate intercalated with dimethyl sulfoxide. Journal of Physics and Chemistry of Solids, 67, 956–960. DOI:10.1016/j.jpcs.2006.01.009. http://dx.doi.org/10.1016/j.jpcs.2006.01.00910.1016/j.jpcs.2006.01.009Suche in Google Scholar
[2] Bergman, R. L., & Frisch, N. W. (1966). U.S. Patent No. 3293268. Washington, DC, USA: U.S. Patent and Trademark Office. Suche in Google Scholar
[3] Borah, P.,& Datta, A. (2010). Exfoliated VOPO4 · 2H2O dispersed on alumina as a novel catalyst for the selective oxidation of cyclohexane. Applied Catalysis A: General, 376, 19–24. DOI:10.1016/j.apcata.2009.11.020. http://dx.doi.org/10.1016/j.apcata.2009.11.02010.1016/j.apcata.2009.11.020Suche in Google Scholar
[4] Cavani, F., Foresti, E., Trifiró, F.,& Busca, G. (1987). Nature of active species in the ammoxidation of toluene over V2O5/TiO2 catalysts prepared by flash-drying. Journal of Catalysis, 106(1), 251–262. DOI: 10.1016/0021-9517(87) 90229-6. http://dx.doi.org/10.1016/0021-9517(87)90229-610.1016/0021-9517(87)90229-6Suche in Google Scholar
[5] Chandrasekhar, S., Rao, Y. S., Sreelakshmi, L., Mahipal, B.,& Reddy, C. R. (2008). Tris(pentafluorophenyl)boranecatalyzed three-component reaction for the synthesis of 1,8-dioxodecahydroacridines under solvent-free conditions. Synthesis, 2008, 1737–1740. DOI:10.1055/s-2008-1067039. http://dx.doi.org/10.1055/s-2008-106703910.1055/s-2008-1067039Suche in Google Scholar
[6] Chen, Y. L., Fang, K. C., Sheu, J. Y., Hsu, S. L.,& Tzeng, C. C. (2001). Synthesis and antibacterial evaluation of certain quinolone derivatives. Journal of Medicinal Chemistry, 44, 2374–2377. DOI: 10.1021/jm0100335. http://dx.doi.org/10.1021/jm010033510.1021/jm0100335Suche in Google Scholar
[7] Chen, W. Y., Qin, S. D.,& Jin, J. R. (2007). HBF4-catalyzed Biginelli reaction: One-pot synthesis of dihydropyrimidin-2(1H)-ones under solvent-free conditions. Catalysis Communications, 8, 123–126. DOI:10.1016/j.catcom.2006.05.026. http://dx.doi.org/10.1016/j.catcom.2006.05.02610.1016/j.catcom.2006.05.026Suche in Google Scholar
[8] Choudary, B. M., Neeraja, V.,& Lakshmi Kantam, M. (2001). Vanadyl(IV) acetate: a mild and efficient heterogeneous catalyst for the tetrahydropyranylation of alcohols, thiols and phenols. Journal of Molecular Catalysis A: Chemical, 175, 169–172. DOI: 10.1016/s1381-1169(01)00202-3. http://dx.doi.org/10.1016/S1381-1169(01)00202-310.1016/S1381-1169(01)00202-3Suche in Google Scholar
[9] Das, B., Ravikanth, B., Ramu, R.,& Rao, B. V. (2006). An efficient one-pot synthesis of polyhydroquinolines at room temperature using HY-zeolite. Chemical & Pharmaceutical Bulletin, 54, 1044–1045. DOI: 10.1248/cpb.54.1044. http://dx.doi.org/10.1248/cpb.54.104410.1248/cpb.54.1044Suche in Google Scholar PubMed
[10] Das, D. P.,& Parida, K. M. (2008). Solar light induced photocatalytic degradation of pollutants over titania pillared zirconium phosphate and titanium phosphate. Catalysis Surveys from Asia, 12, 203–213. DOI: 10.1007/s10563-008-9052-6. http://dx.doi.org/10.1007/s10563-008-9052-610.1007/s10563-008-9052-6Suche in Google Scholar
[11] Dasgupta, S., Agarwal, M.,& Datta, A. (2002). Long chain alkyl amine templated synthesis of a mesostructured lamellar vanadium phosphate phase. Journal of Materials Chemistry, 12, 162–164. DOI: 10.1039/b109472f. http://dx.doi.org/10.1039/b109472f10.1039/b109472fSuche in Google Scholar
[12] Dasgupta, S., Agarwal, M.,& Datta, A. (2004). Surfactant assisted organization of an exfoliated vanadyl ortho phosphate to a mesostructured lamellar vanadium phosphate phase. Microporous and Mesoporous Materials, 67, 229–234. DOI:10.1016/j.micromeso.2003.11.006. http://dx.doi.org/10.1016/j.micromeso.2003.11.00610.1016/j.micromeso.2003.11.006Suche in Google Scholar
[13] Datta, A., Dasgupta, S., Agarwal, M.,& Ray, S. S. (2005). Mesolamellar VPO phases obtained by incorporating long chain alkyl amine surfactants into the layered vanadium phosphate dihydrate phase. Microporous and Mesoporous Materials, 83, 114–124. DOI:10.1016/j.micromeso.2005.03.019. http://dx.doi.org/10.1016/j.micromeso.2005.03.01910.1016/j.micromeso.2005.03.019Suche in Google Scholar
[14] Dias, C. R., Portela, M. F., Galán-Fereres, M., Bañares, M. A., López Granados, M., Peña, M. A.,& Fierro, J. L. G. (1997). Selective oxidation of o-xylene to phthalic anhydride on V2O5 supported on TiO2-coated SiO2. Catalysis Letters, 43, 117–121. DOI:10.1023/a:1018990506391. http://dx.doi.org/10.1023/A:101899050639110.1023/A:1018990506391Suche in Google Scholar
[15] Evans, C. G.,& Gestwicki, J. E. (2009). Enantioselective organocatalytic Hantzsch synthesis of polyhydroquinolines. Organic Letters, 11, 2957–2959. DOI: 10.1021/ol901114f. http://dx.doi.org/10.1021/ol901114f10.1021/ol901114fSuche in Google Scholar
[16] Gribot-Perrin, N., Volta, J. C., Burrows, A., Kiely, C.,& Gubelmann-Bonneau, M. (1996). On the role of microstructure of vanadium phosphorus oxides for propane oxidation to acrylic acid. Studies in Surface Science and Catalysis, 101, 1205–1214. DOI: 10.1016/s0167-2991(96)80332-6. http://dx.doi.org/10.1016/S0167-2991(96)80332-610.1016/S0167-2991(96)80332-6Suche in Google Scholar
[17] Guan, J. Q., Xu, H. Y., Jing, S. B., Wu, S. J., Ma, Y. Y., Shao, Y. Q.,& Kan, Q. B. (2008). Selective oxidation of isobutane and isobutene over vanadium phosphorus oxides. Catalysis Communications, 10, 276–280. DOI:10.1016/j.catcom.2008.09.003. http://dx.doi.org/10.1016/j.catcom.2008.09.00310.1016/j.catcom.2008.09.003Suche in Google Scholar
[18] Guliants, V. V., Benziger, J. B., Sundaresan, S., Wachs, I. E., Jehng, J. M.,& Roberts, J. E. (1996). The effect of the phase composition of model VPO catalysts for partial oxidation of n-butane. Catalysis Today, 28, 275–295. DOI: 10.1016/s0920-5861(96)00043-0. http://dx.doi.org/10.1016/S0920-5861(96)00043-010.1016/S0920-5861(96)00043-0Suche in Google Scholar
[19] Heydari, A., Khaksar, S., Tajbakhsh, M.,& Bijanzadeh, H. R. (2009). One-step synthesis of Hantzsch esters and polyhydroquinoline derivatives in fluoro alcohols. Journal of Fluorine Chemistry, 130, 609–614. DOI:10.1016/j.jfluchem.2009.03.014. http://dx.doi.org/10.1016/j.jfluchem.2009.03.01410.1016/j.jfluchem.2009.03.014Suche in Google Scholar
[20] Hong, M., Cai, C., & Yi, W. B. (2010). Hafnium (IV) bis(perfluorooctanesulfonyl)imide complex catalyzed synthesis of polyhydroquinoline derivatives via unsymmetrical Hantzsch reaction in fluorous medium. Journal of Fluorine Chemistry, 131, 111–114. DOI:10.1016/j.jfluchem.2009.10.009. http://dx.doi.org/10.1016/j.jfluchem.2009.10.00910.1016/j.jfluchem.2009.10.009Suche in Google Scholar
[21] Ji, S. J., Jiang, Z. Q., Lu, J.,& Loh, T. P. (2004). Facile ionic liquids-promoted one-pot synthesis of polyhydroquinoline derivatives under solvent-free conditions. Synlett, 2004, 831–835. DOI:10.1055/s-2004-820035. http://dx.doi.org/10.1055/s-2004-82003510.1055/s-2004-820035Suche in Google Scholar
[22] Ko, S. K., Sastry, M. N. V., Lin, C. C.,& Yao, C. F. (2005). Molecular iodine-catalyzed one-pot synthesis of 4-substituted-1,4-dihydropyridine derivatives via Hantzsch reaction. Tetrahedron Letters, 46, 5771–5774. DOI: 10.1016/j.tetlet.2005.05.148. http://dx.doi.org/10.1016/j.tetlet.2005.05.14810.1016/j.tetlet.2005.05.148Suche in Google Scholar
[23] Kondratenko, E. V., Cherian, M.,& Baerns, M. (2006). Oxidative dehydrogenation of propane over differently structured vanadia-based catalysts in the presence of O2 and N2O. Catalysis Today, 112, 60–63. DOI:10.1016/j.cattod.2005.11.028. http://dx.doi.org/10.1016/j.cattod.2005.11.02810.1016/j.cattod.2005.11.028Suche in Google Scholar
[24] Kolvari, E., Zolfigol, M. A., Koukabi, N.,& Shirmardi-Shaghasemi, B. (2011). A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions. Chemical Papers, 65, 898–902. DOI: 10.2478/s11696-011-0087-1. http://dx.doi.org/10.2478/s11696-011-0087-110.2478/s11696-011-0087-1Suche in Google Scholar
[25] Kumar, S., Sharma, P., Kapoor, K. K.,& Hundal, M. S. (2008). An efficient, catalyst- and solvent-free, four-component, and one-pot synthesis of polyhydroquinolines on grinding. Tetrahedron, 64, 536–542. DOI:10.1016/j.tet.2007.11.008. http://dx.doi.org/10.1016/j.tet.2007.11.00810.1016/j.tet.2007.11.008Suche in Google Scholar
[26] Machado, M. O., de Farias, R. F.,& Airoldi, C. (2004). Two different synthetic routes involving the reaction of dodecylamine or nicotinamide with crystalline lamellar vanadylphosphate. Journal of Physics and Chemistry of Solids, 65, 1697–1703. DOI:10.1016/j.jpcs.2004.04.008. http://dx.doi.org/10.1016/j.jpcs.2004.04.00810.1016/j.jpcs.2004.04.008Suche in Google Scholar
[27] Nagaraju, P., Lingaiah, N., Prasad, P. S. S., Kalevaru, V. N.,& Martin, A. (2008). Preparation, characterization and catalytic properties of promoted vanadium phosphate catalysts. Catalysis Communications, 9, 2449–2454. DOI:10.1016/j.catcom.2008.06.012. http://dx.doi.org/10.1016/j.catcom.2008.06.01210.1016/j.catcom.2008.06.012Suche in Google Scholar
[28] Nagarapu, L., Apuri, S., Gaddam, S., Bantu, R., Mahankhali, V. C.,& Kantevari, S. (2008). A facile synthesis of polyhydroquinoline derivatives via the Hantzsch reaction under solvent free-conditions using potassium dodecatungsto cobaltate trihydrate (K5CoW12O40.3H2O). Letters in Organic Chemistry, 5, 60–64. DOI: 10.2174/157017808783330162. http://dx.doi.org/10.2174/15701780878333016210.2174/157017808783330162Suche in Google Scholar
[29] Nguyen-Phan, T. D., Song, M. B., Yun, H., R. Kim, E. J., Oh, E. S.,& Shin, E. W. (2011). Characterization of vanadiumdoped mesoporous titania and its adsorption of gaseous benzene. Applied Surface Science, 257, 2024–2031. DOI:10.1016/j.apsusc.2010.09.046. http://dx.doi.org/10.1016/j.apsusc.2010.09.04610.1016/j.apsusc.2010.09.046Suche in Google Scholar
[30] Oskooie, H. A., Baghernezhad, B., Heravi M. M.,& Beheshtiha, Y. Sh. (2008). Vanadyl sulfate (VOSO4.3H2O). An efficient catalyst for acylation of alcohols and phenols under solvent free condition. Journal of the Chinese Chemical Society, 55, 713–715. Suche in Google Scholar
[31] Perozo-Rondón, E., Calvino-Casilda, V., Martín-Aranda, R. M., Casal, B., Durán-Valle, C. J.,& Rojas-Cervantes, M. L. (2006). Catalysis by basic carbons: Preparation of dihydropyridines. Applied Surface Science, 252, 6080–6083. DOI:10.1016/j.apsusc.2005.11.017. http://dx.doi.org/10.1016/j.apsusc.2005.11.01710.1016/j.apsusc.2005.11.017Suche in Google Scholar
[32] Rownaghi, A. A., Taufiq-Yap, Y. H.,& Rezaei, F. (2009). Solvothermal synthesis of vanadium phosphate catalysts for n-butane oxidation. Journal of Chemical Engineering, 155, 514–522. DOI:10.1016/j.cej.2009.07.055. http://dx.doi.org/10.1016/j.cej.2009.07.05510.1016/j.cej.2009.07.055Suche in Google Scholar
[33] Sabitha, G., Kiran Kumar Reddy, G. S., Srinavas Reddy, C.,& Yadav, J. S. (2003a). A novel TMSI-mediated synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature. Tetrahedron Letters, 44, 4129–4131. DOI: 10.1016/s0040-4039(03)00813-x. http://dx.doi.org/10.1016/S0040-4039(03)00813-X10.1016/S0040-4039(03)00813-XSuche in Google Scholar
[34] Sabitha, G., Kiran Kumar Reddy, G. S., Bhaskar Reddy, K.,& Yadav, J. S. (2003b). Vanadium(III) chloride catalyzed Biginelli condensation: solution phase library generation of dihydropyrimidin-(2H)-ones. Tetrahedron Letters, 44, 6497–6499. DOI: 10.1016/s0040-4039(03)01564-8. http://dx.doi.org/10.1016/S0040-4039(03)01564-810.1016/S0040-4039(03)01564-8Suche in Google Scholar
[35] Samantaray, S. K., Mishra, T.,& Parida, K. M. (2000). Studies on anion promoted titania: 2: Preparation, characterisation and catalytic activity towards aromatic alkylation over sulfated titania. Journal of Molecular Catalysis A: Chemical, 156, 267–274. DOI: 10.1016/s1381-1169(99)00424-0. http://dx.doi.org/10.1016/S1381-1169(99)00424-010.1016/S1381-1169(99)00424-0Suche in Google Scholar
[36] Shan, R. D., Velazquez, C.,& Knaus, E. E. (2004). Syntheses, calcium channel agonist-antagonist modulation activities, and nitric oxide release studies of nitrooxyalkyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(2,1,3-benzoxadiazol-4-yl)pyridine-5-carboxylate racemates, enantiomers, and diastereomers. Journal of Medicinal Chemistry, 47, 254–261. DOI: 10.1021/jm030333h. http://dx.doi.org/10.1021/jm030333h10.1021/jm030333hSuche in Google Scholar
[37] Solsona, B., Zazhigalov, V. A., López-Nieto, J. M., Bacherikova, I. V.,& Diyuk, E. A. (2003). Oxidative dehydrogenation of ethane on promoted VPO catalysts. Applied Catalysis A: General, 249, 81–92. DOI: 10.1016/s0926-860x(03)00178-9. http://dx.doi.org/10.1016/S0926-860X(03)00178-910.1016/S0926-860X(03)00178-9Suche in Google Scholar
[38] Song, G. Y., Wang, B., Wu, X. Y., Kang, Y. R.,& Yang, L. M. (2005). Montmorillonite K10 clay: An effective solid catalyst for one-pot synthesis of polyhydroquinoline derivatives. Synthetic Communications, 35, 2875–2880. DOI: 10.1080/00397910500297255. http://dx.doi.org/10.1080/0039791050029725510.1080/00397910500297255Suche in Google Scholar
[39] Sunil Kumar, B., Kumar, P. S., Srinivasulu, N., Rajitha, B., Thirupathi Reddy, Y., Narsimha Reddy, P., & Udupi, R. H. (2006). Vanadium(III) chloride as an effective catalyst for the Pechmann reaction. Chemistry of Heterocyclic Compounds, 42, 172–175. DOI: 10.1007/s10593-006-0066-6. http://dx.doi.org/10.1007/s10593-006-0066-610.1007/s10593-006-0066-6Suche in Google Scholar
[40] Venkatathri, N., Santhanaraj, D.,& Shanthi, K. (2008). Synthesis, characterization and catalytic properties of a novel Mn — organophosphate having MFI topology. Bulletin of the Catalysis Society of India, 7(3), 97–104. Suche in Google Scholar
[41] Wang, L. M., Sheng, J., Zhang, L., Han, J. W., Fan, Z. Y., Tian, H.,& Qian, C. T. (2005). Facile Yb(OTf)3 promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction. Tetrahedron, 61, 1539–1543. DOI:10.1016/j.tet.2004.11.079. http://dx.doi.org/10.1016/j.tet.2004.11.07910.1016/j.tet.2004.11.079Suche in Google Scholar
[42] Wang, C. T., Chen, M. T.,& Lai, D. L. (2011). Surface characterization and reactivity of vanadium-tin oxide nanoparticles. Applied Surface Science, 257, 5109–5114. DOI:10.1016/j.apsusc.2011.01.031. http://dx.doi.org/10.1016/j.apsusc.2011.01.03110.1016/j.apsusc.2011.01.031Suche in Google Scholar
[43] Whittington, B. I.,& Anderson, J. R. (1993). Nature and activity of some vanadium catalysts. The Journal of Physical Chemistry, 97, 1032–1041. DOI: 10.1021/j100107a010. http://dx.doi.org/10.1021/j100107a01010.1021/j100107a010Suche in Google Scholar
[44] Wu, Z. L., Dai, S.,& Overbury, S. H. (2010). Multiwavelength Raman spectroscopic study of silica-supported vanadium oxide catalysts. The Journal of Physical Chemistry C, 114, 412–422. DOI: 10.1021/jp9084876. http://dx.doi.org/10.1021/jp908487610.1021/jp9084876Suche in Google Scholar
[45] Xue, M. W., Chen, H., Zhang, H. L., Auroux, A.,& Shen, J. Y. (2010). Preparation and characterization of V-Ag-O catalysts for the selective oxidation of toluene. Applied Catalysis A: General, 379, 7–14. DOI:10.1016/j.apcata.2010.02.023. http://dx.doi.org/10.1016/j.apcata.2010.02.02310.1016/j.apcata.2010.02.023Suche in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Synthesis and characterisation of a novel bi-nuclear copper2+ complex and its application as electrode-modifying agent for simultaneous voltammetric determination of dopamine and ascorbic acid
- Synthesis of ethyl-6-aminohexanoate from caprolactam and ethanol in near-critical water
- Vanadium dodecylamino phosphate: A novel efficient catalyst for synthesis of polyhydroquinolines
- Modelling and experimental validation of enantioseparation of racemic phenylalanine via a hollow fibre-supported liquid membrane
- Influence of operating conditions on performance of ceramic membrane used for water treatment
- Mercury associated with size-fractionated urban particulate matter: three years of sampling in Prague, Czech Republic
- Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes
- A new organically templated magnesium sulfate: structure, spectroscopic analysis, and thermal behaviour
- Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors
- Synthesis and photophysical properties of new Ln(III) (Ln = Eu(III), Gd(III), or Tb(III)) complexes of 1-amidino-O-methylurea
- Polycarbonate-based polyurethane elastomers: temperature-dependence of tensile properties
- Synthesis of a disulfide functionalized diacetylenic derivative of carbazole as building-block of polymerizable self-assembled monolayers
- Properties of poly(lactic acid-co-glycolic acid) film modified by blending with polyurethane
- Determination of 10B in lymphoma human cells after boron carrier treatment: comparison of 10BPA and immuno-nanoparticles
- Molecular modelling and spectral investigation of some triphenyltetrazolium chloride derivatives
- X-ray molecular structure and theoretical study of 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl]benzene
- 1,3-Dipolar cycloaddition between substituted phenyl azide and 2,3-dihydrofuran
Artikel in diesem Heft
- Synthesis and characterisation of a novel bi-nuclear copper2+ complex and its application as electrode-modifying agent for simultaneous voltammetric determination of dopamine and ascorbic acid
- Synthesis of ethyl-6-aminohexanoate from caprolactam and ethanol in near-critical water
- Vanadium dodecylamino phosphate: A novel efficient catalyst for synthesis of polyhydroquinolines
- Modelling and experimental validation of enantioseparation of racemic phenylalanine via a hollow fibre-supported liquid membrane
- Influence of operating conditions on performance of ceramic membrane used for water treatment
- Mercury associated with size-fractionated urban particulate matter: three years of sampling in Prague, Czech Republic
- Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes
- A new organically templated magnesium sulfate: structure, spectroscopic analysis, and thermal behaviour
- Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors
- Synthesis and photophysical properties of new Ln(III) (Ln = Eu(III), Gd(III), or Tb(III)) complexes of 1-amidino-O-methylurea
- Polycarbonate-based polyurethane elastomers: temperature-dependence of tensile properties
- Synthesis of a disulfide functionalized diacetylenic derivative of carbazole as building-block of polymerizable self-assembled monolayers
- Properties of poly(lactic acid-co-glycolic acid) film modified by blending with polyurethane
- Determination of 10B in lymphoma human cells after boron carrier treatment: comparison of 10BPA and immuno-nanoparticles
- Molecular modelling and spectral investigation of some triphenyltetrazolium chloride derivatives
- X-ray molecular structure and theoretical study of 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl]benzene
- 1,3-Dipolar cycloaddition between substituted phenyl azide and 2,3-dihydrofuran