Startseite Lebenswissenschaften X-ray molecular structure and theoretical study of 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl]benzene
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

X-ray molecular structure and theoretical study of 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl]benzene

  • M. Percino EMAIL logo , Maria Castro , Margarita Ceron , Guillermo Soriano-Moro , Victor Chapela und Francisco Melendez
Veröffentlicht/Copyright: 30. Oktober 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The structural characterisation of the molecule 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl] benzene obtained through Knoevenagel condensation is reported. The single crystals, as light brown rods, were cultured from a chloroform solution using a slow evaporation method at ambient temperature. The compound crystallised in the monoclinic system belonging to the C2/c space group with a = 26.4556(9) Å, b = 3.73562(10) Å, c = 18.4230(6) Å, β = 109.841(4)° and the asymmetric unit comprising Z = 4. The structure is ordered and the molecules of the title compound exhibited a lattice with water molecules located at sites of inversion and two-fold axial symmetries. Thus, only halves of the molecules are symmetrically independent. The lattice is reported and contrasted with X-ray single-crystal diffraction and theoretical calculations of 1,4-bis(1-cyano-2-phenylethenyl)benzene. By using density functional theory (DFT) and second order Moller-Plesset (MP2) theoretical calculations, the ground state geometry in the whole molecule at the B3LYP/6-31+G(d,p), and MP2/6-31+G(d,p) theory levels, respectively, were optimised. The DFT calculations showed a quasi-planar structure of the molecule, whereas the wave function-based MP2 method afforded a non-planar optimised structure with significant torsion angles between the pyridine and phenyl rings.

[1] Agilent Technologies (2012). CrysAlisPro (Version 1.171.36.20) [computer program]. Santa Clara, CA, USA: Agilent Technologies. Suche in Google Scholar

[2] Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G., & Taylor, R. (1987). Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. Journal of the Chemical Society, Perkin Transactions 2, 1987, S1–S19. DOI: 10.1039/p298700000s1. 10.1039/p298700000s1Suche in Google Scholar

[3] Andrade, S. G., Gonçalves, L. C. S., & Jorge, F. E. (2008). Scaling factors for fundamental vibrational frequencies and zeropoint energies obtained from HF, MP2, and DFT/DZP and TZP harmonic frequencies. Journal of Molecular Structure: THEOCHEM, 864, 20–25. DOI: 10.1016/j.theochem.2008.05.025. http://dx.doi.org/10.1016/j.theochem.2008.05.02510.1016/j.theochem.2008.05.025Suche in Google Scholar

[4] Bartholomew, G. P., Bazan, G. C., Bu, X. H., & Lachicotte, R. J. (2000). Packing modes of distyrylbenzene derivatives. Chemistry of Materials, 12, 1422–1430. DOI: 10.1021/ cm991194o. http://dx.doi.org/10.1021/cm991194o10.1021/cm991194oSuche in Google Scholar

[5] Bartocci, G., Mazzucato, U., Masetti, F., & Galiazzo, G. (1980). Excited state reactivity of aza aromatics. 9. Fluorescence and photoisomerization of planar and hindered styrylpyridines. The Journal of Physical Chemistry, 84, 847–851. DOI: 10.1021/j100445a010. http://dx.doi.org/10.1021/j100445a01010.1021/j100445a010Suche in Google Scholar

[6] Bartocci, G., & Mazzucato, U. (1982). Conformational equilibria and photophysical behaviour of styrylpyridines; excitation energy effects in fluid and rigid solutions. Journal of Luminescence, 27, 163–175. DOI: 10.1016/0022-2313(82)90018-7. http://dx.doi.org/10.1016/0022-2313(82)90018-710.1016/0022-2313(82)90018-7Suche in Google Scholar

[7] Bauschlicher, C. W., & Langhoff, S. R. (1997). The calculation of accurate harmonic frequencies of large molecules: the polycyclic aromatic hydrocarbons, a case study. Spectrochimica Acta Part A, 53, 1225–1240. DOI: 10.1016/s1386-1425(97)00022-x. http://dx.doi.org/10.1016/S1386-1425(97)00022-X10.1016/S1386-1425(97)00022-XSuche in Google Scholar

[8] Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exchange. The Journal of Chemical Physics, 98, 5648–5652. DOI: 10.1063/1.464913. http://dx.doi.org/10.1063/1.46491310.1063/1.464913Suche in Google Scholar

[9] Chapela, V. M., Percino, M. J., & Rodríguez-Barbarín, C. (2003). Crystal structure of 2,6-distyrylpyridine. Journal of Chemical Crystallography, 33, 77–83. DOI: 10.1023/a: 1023210422362. http://dx.doi.org/10.1023/A:102321042236210.1023/A:1023210422362Suche in Google Scholar

[10] Ditchfield, R., Hehre, W. J., & Pople, J. A. (1971). Self consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. The Journal of Chemical Physics, 54, 724–728. DOI: 10.1063/1.1674902. http://dx.doi.org/10.1063/1.167490210.1063/1.1674902Suche in Google Scholar

[11] Enkeimann, V. (1998). In K. Müllen, & G. Wegner (Eds.), Electronic materials: The oligomer approach. Weinheim, Germany: Wiley. Suche in Google Scholar

[12] Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Brédas, J. L., Löglund, M., & Salaneck, W. R. (1999). Electroluminiscence in conjugated polymers. Nature, 397, 121–128. DOI: 10.1038/16393. http://dx.doi.org/10.1038/1639310.1038/16393Suche in Google Scholar

[13] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2009). Gaussian 09 [computer program]. Wallingford, CT, USA: Gaussian. Suche in Google Scholar

[14] Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27, 1787–1799. DOI: 10.1002/jcc.20495. http://dx.doi.org/10.1002/jcc.2049510.1002/jcc.20495Suche in Google Scholar

[15] Greenham, N. C., Moratti, S. C., Bradley, D. D. C., Friend, R. H., & Holmes, A. B. (1993). Efficient light-emitting diodes based on polymers with high electron affinities. Nature, 365, 628–630. DOI: 10.1038/365628a0. http://dx.doi.org/10.1038/365628a010.1038/365628a0Suche in Google Scholar

[16] Head-Gordon, M., Pople, J. A., & Frisch, M. J. (1998). MP2 energy evaluation by direct methods. Chemical Physics Letters, 153, 503–506. DOI: 10.1016/0009-2614(88)85250-3. http://dx.doi.org/10.1016/0009-2614(88)85250-310.1016/0009-2614(88)85250-3Suche in Google Scholar

[17] Irngartinger, H., Lichtenthäler, J., & Herpich, R. (1994). Molecular structures and packing arrangements of five 2,5-bis(aryl-2-vinyl)-1,4-dimethoxybenzene derivatives. Structural Chemistry, 5, 283–289. DOI: 10.1007/bf02275501. http://dx.doi.org/10.1007/BF0227550110.1007/BF02275501Suche in Google Scholar

[18] Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140, 1133–1138. DOI: 10.1103/physrev.140.a1133. http://dx.doi.org/10.1103/PhysRev.140.A113310.1103/PhysRev.140.A1133Suche in Google Scholar

[19] Lawson Daku, L. M., Linares, J., & Boillot, M. L. (2007). Ab initio static and molecular dynamics study of 4-styrylpyridine. ChemPhysChem, 8, 1402–1416. DOI: 10.1002/cphc.200700117. http://dx.doi.org/10.1002/cphc.20070011710.1002/cphc.200700117Suche in Google Scholar PubMed

[20] Lee, C. T., Yang, W. T., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into functional of the electron density. Physical Reviews B, 37, 785–789. DOI: 10.1103/physrevb.37.785. http://dx.doi.org/10.1103/PhysRevB.37.78510.1103/PhysRevB.37.785Suche in Google Scholar

[21] Li, X. C., Sirringhaus, H., Garnier, F., Holmes, A. B., Moratti, S. C., Feeder, N., Clegg, W., Teat, S. J., & Friend, R. H. (1998). A highly π-stacked organic semiconductor for thin film transistors based on fused thiophenes. Journal of the American Chemical Society, 120, 2206–2207. DOI: 10.1021/ja9735968. http://dx.doi.org/10.1021/ja973596810.1021/ja9735968Suche in Google Scholar

[22] Mackie, I. D., & DiLabio, G. A. (2008). Interactions in large, polyaromatic hydrocarbon dimers: Application of density functional theory with dispersion corrections. The Journal of Physical Chemistry A, 112, 10968–10976. DOI: 10.1021/jp806162t. http://dx.doi.org/10.1021/jp806162t10.1021/jp806162tSuche in Google Scholar PubMed

[23] Marri, E., Galiazzo, G., Mazzucato, U., & Spalletti, A. (2005). Excited state properties of cross-conjugated 1,2- and 1,3-distyrylbenzene and some aza-analogues. Chemical Physics, 312, 205–211. DOI: 10.1016/j.chemphys.2004.11.038. http://dx.doi.org/10.1016/j.chemphys.2004.11.03810.1016/j.chemphys.2004.11.038Suche in Google Scholar

[24] Melendez, F. J., Urzúa, O., Percino, M. J., & Chapela, V. M. (2010). A theoretical study on three conformational structures of 2,6-distyrylpyridine. International Journal of Quantum Chemistry, 110, 838–849. DOI: 10.1002/qua.22024. 10.1002/qua.22024Suche in Google Scholar

[25] Ośmiałowski, B., Kolehmainen, E., Nissinen, M., Krygowski, T. M., & Gawinecki, R. (2002). (1Z,3Z)-1,4-Di(pyridine-2-yl)buta-1,3-diene-2,3-diol: The planar highly conjugated symmetrical enediol with multiple intramolecular hydrogen bonds. The Journal of Organic Chemistry, 67, 3339–3345. DOI: 10.1021/jo016293b. http://dx.doi.org/10.1021/jo016293b10.1021/jo016293bSuche in Google Scholar PubMed

[26] Percino, M. J., & Chapela, V. M. (1996). Poly(2,6-pyridinediylvinylene). In J. C. Salomone (Ed.), Polymeric materials encyclopedia (Vol. 9, pp. 6662–6670). New York, NY, USA: CRC Press. DOI: 0-8493-2470-x/96. Suche in Google Scholar

[27] Percino, M. J., Chapela, V. M., Romero, S., Rodríguez-Barbarín, C., & Melendez-Bustamante, F. J. (2006). Synthesis of 1,2-dimethoxy-1,2-di(pyridin-2-yl)-1,2-ethanediol: Crystal and molecular structure determination. Journal of Chemical Crystallography, 36, 303–308. DOI: 10.1007/s10870-005-9064-2. http://dx.doi.org/10.1007/s10870-005-9064-210.1007/s10870-005-9064-2Suche in Google Scholar

[28] Percino, M. J., Chapela, V. M., Montiel, L. F., Pérez-Gutiérrez, E., & Maldonado, J. L. (2010). Spectroscopic characterization of halogen- and cyano-substituted pyridinevinylenes synthesized without catalyst or solvent. Chemical Papers, 64, 360–367. DOI: 10.2478/s11696-010-0012-z. http://dx.doi.org/10.2478/s11696-010-0012-z10.2478/s11696-010-0012-zSuche in Google Scholar

[29] Percino, M. J., Chapela, V. M., Pérez-Gutiérrez, E., Cerón, M., & Soriano, G. (2011). Synthesis, optical, and spectroscopic characterisation of substituted 3-phenyl-2-arylacrylonitriles. Chemical Papers, 65, 42–51. DOI: 10.2478/s11696-010-0075-x. http://dx.doi.org/10.2478/s11696-010-0075-x10.2478/s11696-010-0075-xSuche in Google Scholar

[30] Percino, M. J., Chapela, V. M., Cerón, M., Castro, M. E., Soriano-Moreno, G., Pérez-Gutiérrez, E., & Meléndez-Bustamante, F. (2012). Synthesis and characterization of conjugated pyridine-(N-diphenylamino) acrylonitrile derivatives: Photophysical properties. Journal of Materials Science Research, 1, 181–192. DOI: 10.5539/jmsr.v1n2p181. http://dx.doi.org/10.5539/jmsr.v1n2p18110.5539/jmsr.v1n2p181Suche in Google Scholar

[31] Pérez-Gutiérrez, E., Percino, M. J., Chapela, V. M., Cerón, M., Maldonado, J. L., & Ramos-Ortiz, G. (2011). Synthesis, characterization, and photophysical properties of pyridinecarbazole acrylonitrile derivatives. Materials, 4, 562–574. DOI: 10.3390/ma4030562. http://dx.doi.org/10.3390/ma403056210.3390/ma4030562Suche in Google Scholar PubMed PubMed Central

[32] Renak, M. L., Bartholomew, G. P., Wang, S., Ricatto, P. J., Lachicotte, R. J., & Bazan, G. C. (1999). Fluorinated distyrylbenzene chromophores: Effect of fluorine regiochemistry on molecular properties and solid-state organization. Journal of the American Chemical Society, 121, 7787–7799. DOI: 10.1021/ja984440q. http://dx.doi.org/10.1021/ja984440q10.1021/ja984440qSuche in Google Scholar

[33] Roothaan, C. C. J. (1951). New developments in molecular orbital theory. Reviews of Modern Physics, 23, 69–89. DOI: 10.1103/revmodphys.23.69. http://dx.doi.org/10.1103/RevModPhys.23.6910.1103/RevModPhys.23.69Suche in Google Scholar

[34] Schlegel, H. B. (1982). Optimization of equilibrium geometries and transition structures. Journal of Computational Chemistry, 3, 214–218. DOI: 10.1002/jcc.540030212. http://dx.doi.org/10.1002/jcc.54003021210.1002/jcc.540030212Suche in Google Scholar

[35] Shedrick, G. M. (1997) SHELXTL97 and SHELXTL2008 [computer program]. Göttngen, Germany: University of Göttngen. Suche in Google Scholar

[36] Shetty, A. S., Liu, E. B., Lachicotte, R. J., & Jenekhe, S. A. (1999). X-ray crystal structures and photophysical properties of new conjugated oligoquinolines. Chemistry of Materials, 11, 2292–2295. DOI: 10.1021/cm981121p. http://dx.doi.org/10.1021/cm981121p10.1021/cm981121pSuche in Google Scholar

[37] Simon, S., Duran, M., & Dannenberg, J. J. (1996). How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? Journal of Chemical Physics, 105, 11024–11031. DOI: 10.1063/1.472902. http://dx.doi.org/10.1063/1.47290210.1063/1.472902Suche in Google Scholar

[38] Thanthiriwatte, K. S., Hohenstein, E. G., Burns, L. A., & Sherrill, C. D. (2011). Assessment of the performance of DFT and DFT-D methods for describing distance dependence of hydrogen-bonded interactions. Journal of Chemical Theory and Computation, 7, 88–96. DOI: 10.1021/ct100469b. http://dx.doi.org/10.1021/ct100469b10.1021/ct100469bSuche in Google Scholar PubMed

[39] van Hutten, P. F., Wildeman, J., Meetsma, A., & Hadziioannou, G. (1999). Molecular packing in unsubstituted semiconduction phenylenevinylene oligomer and polymer. Journal of the American Chemical Society, 121, 5910–5918. DOI: 10.1021/ja990934r. http://dx.doi.org/10.1021/ja990934r10.1021/ja990934rSuche in Google Scholar

[40] Wadsworth, D. H., Schupp, O. E., Seus, E. J., & Ford, J. A. (1965). The stereochemistry of the phosphonate modification of the Wittig reaction. The Journal of Organic Chemistry, 30, 680–685. DOI: 10.1021/jo01014a005. http://dx.doi.org/10.1021/jo01014a00510.1021/jo01014a005Suche in Google Scholar

[41] Wu, G., Jacobs, S., Lenstra, A. T. H., van Alsenoy, C., & Geise, H. J. (1996). 2,5-Dimethoxy-1,4-bis[2-(2,4-dimethoxyphenyl) ethenyl]benzene studied by quantum chemical calculations and single crystal X-ray diffraction. Journal of Computational Chemistry, 17, 1820–1835. DOI: 10.1002/(sici)1096-987x(199612). Suche in Google Scholar

Published Online: 2013-10-30
Published in Print: 2014-2-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Synthesis and characterisation of a novel bi-nuclear copper2+ complex and its application as electrode-modifying agent for simultaneous voltammetric determination of dopamine and ascorbic acid
  2. Synthesis of ethyl-6-aminohexanoate from caprolactam and ethanol in near-critical water
  3. Vanadium dodecylamino phosphate: A novel efficient catalyst for synthesis of polyhydroquinolines
  4. Modelling and experimental validation of enantioseparation of racemic phenylalanine via a hollow fibre-supported liquid membrane
  5. Influence of operating conditions on performance of ceramic membrane used for water treatment
  6. Mercury associated with size-fractionated urban particulate matter: three years of sampling in Prague, Czech Republic
  7. Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes
  8. A new organically templated magnesium sulfate: structure, spectroscopic analysis, and thermal behaviour
  9. Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors
  10. Synthesis and photophysical properties of new Ln(III) (Ln = Eu(III), Gd(III), or Tb(III)) complexes of 1-amidino-O-methylurea
  11. Polycarbonate-based polyurethane elastomers: temperature-dependence of tensile properties
  12. Synthesis of a disulfide functionalized diacetylenic derivative of carbazole as building-block of polymerizable self-assembled monolayers
  13. Properties of poly(lactic acid-co-glycolic acid) film modified by blending with polyurethane
  14. Determination of 10B in lymphoma human cells after boron carrier treatment: comparison of 10BPA and immuno-nanoparticles
  15. Molecular modelling and spectral investigation of some triphenyltetrazolium chloride derivatives
  16. X-ray molecular structure and theoretical study of 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl]benzene
  17. 1,3-Dipolar cycloaddition between substituted phenyl azide and 2,3-dihydrofuran
Heruntergeladen am 20.12.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0434-5/html
Button zum nach oben scrollen