Home Life Sciences Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes
Article
Licensed
Unlicensed Requires Authentication

Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes

  • Rosa Rodriguez-Jasso EMAIL logo , Solange Mussatto , Lorenzo Pastrana , Cristóbal Aguilar and José Teixeira
Published/Copyright: October 30, 2013
Become an author with De Gruyter Brill

Abstract

Sulphated polysaccharides (SP) were extracted from Fucus vesiculosus seaweed by using two different hydrothermal processes: microwave-assisted extraction (MAE) and autohydrolysis (AH). The extraction yields, chemical composition, and antioxidant activity of the polysaccharides extracted were determined and compared. Although both processes afforded SP with similar yields (18.2 mass % and 16.5 mass %, for MAE and AH, respectively) and l-fucose as the main monosaccharide, the heterogeneous structure of the polysaccharide recovered was significantly affected by the AH process. The SP obtained by MAE contained 53.8 mole % of fucose, 35.3 mole % of xylose, and 10.8 mole % of galactose; while the SP obtained by AH was composed of 76.8 mole % of fucose and 23.2 mole % of galactose. Both samples presented comparable values of antioxidant activity by the di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (2,2-diphenyl-1-picrylhydrazyl, DPPH), 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), and lipid oxidation inhibition methods, but the polysaccharide obtained by AH exhibited a higher antioxidant potential by the differential pulse voltammetry technique. This study demonstrates that the chemical composition and antioxidant activity of SP obtained from F. vesiculosus vary according to the process used for their extraction. However, the SP obtained by MAE or AH both have the potential for use as natural antioxidants in industrial applications.

[1] Barahona, T., Chandía, N. P., Encinas, M. V., Matsuhiro, B., & Zúñiga, E. A. (2011). Antioxidant capacity of sulfated polysaccharides from seaweeds. A kinetic approach. Food Hydrocolloids, 25, 529–535. DOI: 10.1016/j.foodhyd.2010.08.004. http://dx.doi.org/10.1016/j.foodhyd.2010.08.00410.1016/j.foodhyd.2010.08.004Search in Google Scholar

[2] Barros, L., Falcão, S., Baptista, P., Freire, C., Vilas-Boas, M., & Ferreira, I. C. F. R. (2008). Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chemistry, 111, 61–66. DOI:10.1016/j.foodchem.2008.03.033. 10.1016/j.foodchem.2008.03.033Search in Google Scholar

[3] Bhakuni, D. S., & Rawat, D. S. (2005). Bioactive marine natural products. New York, NY, USA: Springer. 10.1007/1-4020-3484-9Search in Google Scholar

[4] Costa, L. S., Fidelis, G. P., Cordeiro, S. L., Oliveira, R. M., Sabry, D. A., Câmara, R. B. G., Nobre, L. T. D. B., Costa, M. S. S. P., Almeida-Lima, J., Farias, E. H. C., Leite, E. L., & Rocha, H. A. O. (2010). Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine & Pharmacotherapy, 64, 21–28. DOI: 10.1016/j.biopha.2009.03.005. http://dx.doi.org/10.1016/j.biopha.2009.03.00510.1016/j.biopha.2009.03.005Search in Google Scholar

[5] Dodgson, K. S. (1961). Determination of inorganic sulphate in studies on the enzymic and non-enzymic hydrolysis of carbohydrate and other sulphate esters. Biochemical Journal, 78, 312–319. 10.1042/bj0780312Search in Google Scholar

[6] Garrote, G., Domínguez, H., & Parajó, J. C. (1999). Hydrothermal processing of lignocellulosic materials. Holz als Roh- und Werksttoff, 57, 191–202. DOI: 10.1007/s001070050039. http://dx.doi.org/10.1007/s00107005003910.1007/s001070050039Search in Google Scholar

[7] Halliwell, B. (2012). Free radicals and antioxidants: updating a personal view. Nutrition Reviews, 70, 257–265. DOI: 10.1111/j.1753-4887.2012.00476.x. http://dx.doi.org/10.1111/j.1753-4887.2012.00476.x10.1111/j.1753-4887.2012.00476.xSearch in Google Scholar

[8] Haroun-Bouhedja, F., Ellouali, M., Sinquin, C., & Boisson-Vidal, C. (2000). Relationship between sulfate groups and biological activities of fucans. Thrombosis Research, 100, 453–459. DOI: 10.1016/s0049-3848(00)00338-8. http://dx.doi.org/10.1016/S0049-3848(00)00338-810.1016/S0049-3848(00)00338-8Search in Google Scholar

[9] Hu, F. L., Lu, R. L., Huang, B., & Ming, L. (2004). Free radical scavenging activity of extracts prepared from fresh leaves of selected Chinese medicinal plants. Fitoterapia, 75, 14–23. DOI: 10.1016/j.fitote.2003.07.003. http://dx.doi.org/10.1016/j.fitote.2003.07.00310.1016/j.fitote.2003.07.003Search in Google Scholar PubMed

[10] Jiao, G. L., Yu, G. L., Wang, W., Zhao, X. L., Zhang, J. Z., & Ewart, S. H. (2012). Properties of polysaccharides in several seaweeds from Atlantic Canada and their potential anti-influenza viral activities. Journal of Ocean University of China, 11, 205–212. DOI: 10.1007/s11802-012-1906-x. http://dx.doi.org/10.1007/s11802-012-1906-x10.1007/s11802-012-1906-xSearch in Google Scholar

[11] Kim, D. O., & Lee, C. Y. (2002). Extraction and isolation of polyphenolics. Current Protocols in Food Analytical Chemistry, 6, I1.2.1–I1.2.12. DOI: 10.1002/0471142913.fai0102s06. 10.1002/0471142913.fai0102s06Search in Google Scholar

[12] Korotkova, E. I., Karbainov, Y. A., & Shevchuk, A. V. (2002). Study of antioxidant properties by voltammetry. Journal of Electroanalytical Chemistry, 518, 56–60. DOI: 10.1016/s0022-0728(01)00664-7. http://dx.doi.org/10.1016/S0022-0728(01)00664-710.1016/S0022-0728(01)00664-7Search in Google Scholar

[13] Li, B., Lu, F., Wei, X. J., & Zhao, R. X. (2008). Fucoidan: Structure and bioactivity. Molecules, 13, 1671–1695. DOI:10.3390/molecules13081671. http://dx.doi.org/10.3390/molecules1308167110.3390/molecules13081671Search in Google Scholar PubMed PubMed Central

[14] Lim, S. N., Cheung, P. C. K., Ooi, V. E. C., & Ang, P. O. (2002). Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum. Journal of Agricultural and Food Chemistry, 50, 3862–3866. DOI: 10.1021/jf020096b. http://dx.doi.org/10.1021/jf020096b10.1021/jf020096bSearch in Google Scholar PubMed

[15] Mao, W. J., Zang, X. X., Li, Y., & Zhang, H. J. (2006). Sulfated polysaccharides from marine green algae Ulva conglobata and their anticoagulant activity. Journal of Applied Phycology, 18, 9–14. DOI: 10.1007/s10811-005-9008-4. http://dx.doi.org/10.1007/s10811-005-9008-410.1007/s10811-005-9008-4Search in Google Scholar

[16] Martins, S., Aguilar, C. N., Teixeira, J. A., & Mussatto, S. I. (2012). Bioactive compounds (phytoestrogens) recovery from Larrea tridentata leaves by solvents extraction. Separation and Purification Technology, 88, 163–167. DOI: 10.1016/j.seppur.2011.12.020. http://dx.doi.org/10.1016/j.seppur.2011.12.02010.1016/j.seppur.2011.12.020Search in Google Scholar

[17] Qi, H. M., Zhao, T. T., Zhang, Q. B., Li, Z., Zhao, Z. Q., & Xing, R. (2005). Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). Journal of Applied Phycology, 17, 527–534. DOI: 10.1007/s10811-005-9003-9. http://dx.doi.org/10.1007/s10811-005-9003-910.1007/s10811-005-9003-9Search in Google Scholar

[18] Rioux, L. E., Turgeon, S. L., & Beaulieu, M. (2007). Characterization of polysaccharides extracted from brown seaweeds. Carbohydrate Polymers, 69, 530–537. DOI: 10.1016/j. carbpol.2007.01.009. http://dx.doi.org/10.1016/j.carbpol.2007.01.00910.1016/j.carbpol.2007.01.009Search in Google Scholar

[19] Rodriguez-Jasso, R. M., Mussatto, S. I., Pastrana, L., Aguilar, C. N., & Teixeira, J. A. (2011). Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydrate Polymers, 86, 1137–1144. DOI: 10.1016/j.carbpol.2011.06.006. http://dx.doi.org/10.1016/j.carbpol.2011.06.00610.1016/j.carbpol.2011.06.006Search in Google Scholar

[20] Rodriguez-Jasso, R. M., Mussatto, S. I., Pastrana, L., Aguilar, C. N., & Teixeira, J. A. (2013). Extraction of sulfated polysaccharides by autohydrolysis of brown seaweed Fucus vesiculosus. Journal of Applied Phycology, 25, 31–39. DOI: 10.1007/s10811-012-9834-0. http://dx.doi.org/10.1007/s10811-012-9834-010.1007/s10811-012-9834-0Search in Google Scholar

[21] Rupérez, P., Ahrazem, O., & Leal, J. A. (2002). Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. Journal of Agricultural and Food Chemistry, 50, 840–845. DOI: 10.1021/jf010908o. http://dx.doi.org/10.1021/jf010908o10.1021/jf010908oSearch in Google Scholar PubMed

[22] Schaeffer, D. J., & Krylov, V. S. (2000). Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicology and Environmental Safety, 45, 208–227. DOI: 10.1006/eesa.1999.1862. http://dx.doi.org/10.1006/eesa.1999.186210.1006/eesa.1999.1862Search in Google Scholar PubMed

[23] Sokolova, E. V., Barabanova, A. O., Bogdanovich, R. N., Khomenko, V. A., Solov’eva, T. F., & Yermak, I. M. (2011). In vitro antioxidant properties of red algal polysaccharides. Biomedicine & Preventive Nutrition, 1, 161–167. DOI: 10.1016/j.bionut.2011.06.011. http://dx.doi.org/10.1016/j.bionut.2011.06.01110.1016/j.bionut.2011.06.011Search in Google Scholar

[24] Wang, J., Zhang, Q. B., Zhang, Z. S., Song, H. F., & Li, P. C. (2010). Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. International Journal of Biological Macromolecules, 46, 6–12. DOI: 10.1016/j.ijbiomac.2009.10.015. http://dx.doi.org/10.1016/j.ijbiomac.2009.10.01510.1016/j.ijbiomac.2009.10.015Search in Google Scholar PubMed

[25] Wijesekara, I., Pangestuti, R., & Kim, S. K. (2011). Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate Polymers, 84, 14–21. DOI: 10.1016/j.carbpol.2010.10.062. http://dx.doi.org/10.1016/j.carbpol.2010.10.06210.1016/j.carbpol.2010.10.062Search in Google Scholar

[26] Wijesinghe, W. A. J. P., & Jeon, Y. J. (2012). Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydrate Polymers, 88, 13–20. DOI: 10.1016/j.carbpol.2011.12.029. http://dx.doi.org/10.1016/j.carbpol.2011.12.02910.1016/j.carbpol.2011.12.029Search in Google Scholar

[27] Yuan, H. M., Zhang, W. W., Li, X. G., Lü, X. X., Li, N., Gao, X. L., & Song, J. M. (2005). Preparation and in vitro antioxidant activity of κ-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives. Carbohydrate Research, 340, 685–692. DOI: 10.1016/j.carres.2004.12.026. http://dx.doi.org/10.1016/j.carres.2004.12.02610.1016/j.carres.2004.12.026Search in Google Scholar PubMed

Published Online: 2013-10-30
Published in Print: 2014-2-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Synthesis and characterisation of a novel bi-nuclear copper2+ complex and its application as electrode-modifying agent for simultaneous voltammetric determination of dopamine and ascorbic acid
  2. Synthesis of ethyl-6-aminohexanoate from caprolactam and ethanol in near-critical water
  3. Vanadium dodecylamino phosphate: A novel efficient catalyst for synthesis of polyhydroquinolines
  4. Modelling and experimental validation of enantioseparation of racemic phenylalanine via a hollow fibre-supported liquid membrane
  5. Influence of operating conditions on performance of ceramic membrane used for water treatment
  6. Mercury associated with size-fractionated urban particulate matter: three years of sampling in Prague, Czech Republic
  7. Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes
  8. A new organically templated magnesium sulfate: structure, spectroscopic analysis, and thermal behaviour
  9. Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors
  10. Synthesis and photophysical properties of new Ln(III) (Ln = Eu(III), Gd(III), or Tb(III)) complexes of 1-amidino-O-methylurea
  11. Polycarbonate-based polyurethane elastomers: temperature-dependence of tensile properties
  12. Synthesis of a disulfide functionalized diacetylenic derivative of carbazole as building-block of polymerizable self-assembled monolayers
  13. Properties of poly(lactic acid-co-glycolic acid) film modified by blending with polyurethane
  14. Determination of 10B in lymphoma human cells after boron carrier treatment: comparison of 10BPA and immuno-nanoparticles
  15. Molecular modelling and spectral investigation of some triphenyltetrazolium chloride derivatives
  16. X-ray molecular structure and theoretical study of 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl]benzene
  17. 1,3-Dipolar cycloaddition between substituted phenyl azide and 2,3-dihydrofuran
Downloaded on 21.12.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0430-9/html
Scroll to top button