Home Life Sciences Synthesis and characterisation of a novel bi-nuclear copper2+ complex and its application as electrode-modifying agent for simultaneous voltammetric determination of dopamine and ascorbic acid
Article
Licensed
Unlicensed Requires Authentication

Synthesis and characterisation of a novel bi-nuclear copper2+ complex and its application as electrode-modifying agent for simultaneous voltammetric determination of dopamine and ascorbic acid

  • Diganta Das EMAIL logo , Babita Sarma and Sangita Haloi
Published/Copyright: October 30, 2013
Become an author with De Gruyter Brill

Abstract

A new binuclear complex of copper2+, [LCu2+(CH3COO)2Cu2+L](CH3COO)2 where L is N,N-bis(phthalimide)ethylenediamine, was synthesised and characterised. The complex ion [LCu2+ (CH3COO)2Cu2+L]2+ was encapsulated into ZSM-5 zeolite and used to modify the surface of the glassy carbon electrode. This modified electrode, in a phosphate buffer solution at pH 7.0, exhibited an oxidation potential for dopamine (DA) and ascorbic acid (AA) at electrode potentials of 0.230 V and −0.090 V vs. Ag/AgCl respectively, a separation of 0.320 V. The electro-oxidation of DA or AA on the modified electrode is independent of each other. No interference was observed from Na+, K+, Cl−, SO42−, Mg2+, Ca2+, Zn2+, Fe2+, and glucose. The detection limits obtained were 2.91 × 10−7 M for DA and 3.5 × 10−7 M for AA.

[1] Ali, S. R., Ma, Y. F., Parajuli, R. R., Balogan, Y., Lai, W. Y. C., & He, H. X. (2007). A nonoxidative sensor based on a self-doped polyanilline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Analytical Chemistry, 79, 2583–2587. DOI: 10.1021/ac062068o. http://dx.doi.org/10.1021/ac062068o10.1021/ac062068oSearch in Google Scholar

[2] Ardakani, M. M., Sheikh-Mohseni, M. A., Abdollahi-Alibaik, M., & Benvidi, A. (2012). Electrochemical sensors for simultaneous determination of norpinephrine, paracetamol and folic acid by a nonstructural mesoporous material. Sensors and Actuators B: Chemical, 171–172, 380–386. DOI: 10.1016/j.snb.2012.04.071. http://dx.doi.org/10.1016/j.snb.2012.04.07110.1016/j.snb.2012.04.071Search in Google Scholar

[3] Arrigoni, O., & De Tullio, M. C. (2002). Ascorbic acid: much more than just an antioxidant. Biochimica et Biophysica Acta, 1569, 1–9. DOI: 10.1016/s0304-4165(01)00235-5. http://dx.doi.org/10.1016/S0304-4165(01)00235-510.1016/S0304-4165(01)00235-5Search in Google Scholar

[4] Babaei, A., Zendehdel, M., Khaliljadeh, B., & Abnosi, M. (2010). A new sensor for simultanious determination of tyrosine and dopamine using iron(III) doped zeolite modified carbon paste electrode. Chinese Journal of Chemistry, 28, 1967–1972. DOI: 10.1002/cjoc.201090328. http://dx.doi.org/10.1002/cjoc.20109032810.1002/cjoc.201090328Search in Google Scholar

[5] Bustos, E. B., Jiménez, M.G. G., Díaz-Sánchez, B. R., Juaristi, E., Chapman, T. W., & Godínez, L. A. (2007). Glassy carbon electrodes modified with composites of starburst-PAMAM dendrimers containing metal nanoparticles for amperometric detection of dopamine in urine. Talanta, 72, 1586–1592. DOI: 10.1016/j.talanta.2007.02.017. http://dx.doi.org/10.1016/j.talanta.2007.02.01710.1016/j.talanta.2007.02.017Search in Google Scholar

[6] Cao, X. H., Zhang, L. X., Cai, W. P., & Li, Y. Q. (2010). Amperometric sensing of dopamine using a single-walled carbon nanotube covalently attached to a conical glass micropore electrode. Electrochemistry Communications, 12, 540–543. DOI: 10.1016/j.elecom.2010.01.038. http://dx.doi.org/10.1016/j.elecom.2010.01.03810.1016/j.elecom.2010.01.038Search in Google Scholar

[7] Chandra, U., Kumara Swamy, B. E., Gilbert, O., Shankar, S. S., Mahanthesha, K. R., & Sherigara, B. S. (2010). Electrocatalytic oxidation of dopamine at chemically modified carbon paste electrode with 2,4-dinitrophenyl hydrazine. International Journal of Electrochemical Science, 5, 1–9. Search in Google Scholar

[8] Cardero-Rando, M. M., Rodríguez, I. N., & de Cisneros, J. L. H. H. (1998). Voltammetric study of 2-methyl-4,6-dinitrophenol at a modified carbon paste electrode. Analytica Chimica Acta, 370, 231–238. DOI: 10.1016/s0003-2670(98)00262-1. http://dx.doi.org/10.1016/S0003-2670(98)00262-110.1016/S0003-2670(98)00262-1Search in Google Scholar

[9] Damier, P., Hirsch, E. C., Agid, Y., & Graybiel, A. M. (1999). The substantia nigra of the human brain II. Patterns of loss of dopamine-containg neurons in Parkinson’s disease. Brain, 122, 1437–1448. DOI: 10.1093/brain/122.8.1437. 10.1093/brain/122.8.1437Search in Google Scholar PubMed

[10] Dayton, M. A., Ewing, A. G., & Wightman, R. M. (1980). Response of microvoltammetric electrodes to homogeneous catalysis and slow heterogeneous charge-transfer reactions. Analytical Chemistry, 52, 2392–2396. DOI: 10.1021/ac50064 a035. http://dx.doi.org/10.1021/ac50064a035Search in Google Scholar

[11] Dong, J. P., Zhou, X. J., Zhao, H. B., Xu, J. Q., & Sum, Y. B. (2011). Reagentless amperometric glucose biosensor based on the immobilization of glucose oxidase on a ferrocene@NaY zeolite composite. Microchimica Acta, 174, 281–288. DOI: 10.1007/s00604-011-0624-1. http://dx.doi.org/10.1007/s00604-011-0624-110.1007/s00604-011-0624-1Search in Google Scholar

[12] Dursun, Z., & Nişli, G. (2004). Voltammetric behaviour of copper( I)oxide modified carbon paste electrode in the presence of cysteine and ascorbic acid. Talanta, 63, 873–878. DOI: 10.1016/j.talanta.2003.12.049. http://dx.doi.org/10.1016/j.talanta.2003.12.04910.1016/j.talanta.2003.12.049Search in Google Scholar PubMed

[13] Gopalan, A. I., Lee, K. P., Manesh, K. M., Santhosh, P., Kim, J. H., & Kang, J. S. (2007). Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol) modified electrode. Talanta, 71, 1774–1781. DOI: 10.1016/j.talanta.2006.08.026. http://dx.doi.org/10.1016/j.talanta.2006.08.02610.1016/j.talanta.2006.08.026Search in Google Scholar

[14] Guirado, A., Zapata, A., & de Arellano, M. C. R. (1997). The reaction of phthalidylidene dichloride with primary amines. Synthesis and X-ray molecular structure of Nsubstituted phthalisoimides. Tetrahedron, 53, 5305–5324. DOI: 10.1016/s0040-4020(97)00194-4. 10.1016/S0040-4020(97)00194-4Search in Google Scholar

[15] Kalita, B., & Talukdar, A. K. (2009). An efficient synthesis of nanocrystalline MFI zeolite using different silica sources: A green approach. Materials Research Bulletin, 44, 254–258. DOI: 10.1016/j.materresbull.2008.06.014. http://dx.doi.org/10.1016/j.materresbull.2008.06.01410.1016/j.materresbull.2008.06.014Search in Google Scholar

[16] Li, Y. X., Huang, X., Chen, Y. L., Wang, L., & Lin, X. Q. (2009). Simultaneous determination of dopamine and serotonin by use of covalent modification of 5-hydroxytryptophan on glassy carbon electrode. Microchimica Acta, 164, 107–112. DOI: 10.1007/s00604-008-0040-3. http://dx.doi.org/10.1007/s00604-008-0040-310.1007/s00604-008-0040-3Search in Google Scholar

[17] Lin, X. H., Zhang, Y. F., Chen, W., & Wu, P. (2007). Electrocatalytic oxidation and determination of dopamine in the presence of ascorbic acid and uric acid at a poly(p-nitrobenzenazo resorcinol) modified glassy carbon electrode. Sensors and Actuators B: Chemical, 122, 309–314. DOI: 10.1016/j.snb.2006.06.004. http://dx.doi.org/10.1016/j.snb.2006.06.00410.1016/j.snb.2006.06.004Search in Google Scholar

[18] Liu, A. H., Honma, I., & Zhou, H. S. (2007). Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly(acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon electrode. Biosenors and Bioelectronics, 23, 74–80. DOI: 10.1016/j.bios.2007.03.019. http://dx.doi.org/10.1016/j.bios.2007.03.01910.1016/j.bios.2007.03.019Search in Google Scholar

[19] Marko-Varga, G., Burested, E., Svensson, C. J., Emnéus, J., Gorton, L., Ruzgas, T., Lutz, M., & Unger, K. K. (1996). Effect of HY-zeolite on the performance of tyrocinase-modified carbon paste electrodes. Electroanalysis, 8, 1121–1126. DOI: 10.1002/elan.1140081209. http://dx.doi.org/10.1002/elan.114008120910.1002/elan.1140081209Search in Google Scholar

[20] Martin, C. (1998). The Parkinson’s puzzle: New developments in our understanding of Parkinson’s disease have generated a number of promising new treatments for this disabling condition. Chemistry in Britain, 34(9), 40–42. Search in Google Scholar

[21] Mazloum-Ardakani, M., Akrami, Z., Kazemian, H., & Zare, H. R. (2009). Preconcentration and electroanalysis of copper at zeolite modified carbon paste electrode. International Journal of Electrochemical Science, 4, 308–319. Search in Google Scholar

[22] Molina, A., Villavicencio, C., & Fernández, L. (2009). Evaluation of a glassy carbon electrode modified with zeolite “A” in adsorption of 2-chlorophenol. Avances en Química, 4, 63–72. (in Spanish) Search in Google Scholar

[23] Neves, I., Freire, C., Zakhárov, A. N., de Castro, B., & Figueiredo, J. L. (1996). Zeolite-encapsulated copper (II) complexes with N3O2 Schiff bases: synthesis and characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 115, 249–256. DOI: 10.1016/0927-7757(96)03596-0. http://dx.doi.org/10.1016/0927-7757(96)03596-010.1016/0927-7757(96)03596-0Search in Google Scholar

[24] Rajbongshi, J., Das, D. K., & Mazumdar, S. (2010). Direct electrochemistry of dinuclear CuA fragment from cytochrome c oxidase of Thermus thermophilus at surfactant modified glassy carbon electrode. Electrochimica Acta, 55, 4174–4179. DOI: 10.1016/j.electacta.2010.02.045. http://dx.doi.org/10.1016/j.electacta.2010.02.04510.1016/j.electacta.2010.02.045Search in Google Scholar

[25] Raoof, J. B., Ojani, R., & Rashid-Nadimi, S. (2005). Voltammetric determination of ascorbic acid and dopamine in the same sample at the surface of a carbon paste electrode modified with polypyrrole/ferrocyanide films. Electrochimica Acta, 50, 4694–4698. DOI: 10.1016/j.electacta.2005.03.002. http://dx.doi.org/10.1016/j.electacta.2005.03.00210.1016/j.electacta.2005.03.002Search in Google Scholar

[26] Rohani, T., & Taher, M. A. (2009). A new method for electrocatalytic oxidation of ascorbic acid at the Cu(II) zeolitemodified electrode. Talanta, 78, 743–747. DOI: 10.1016/j. talanta.2008.12.041. http://dx.doi.org/10.1016/j.talanta.2008.12.04110.1016/j.talanta.2008.12.041Search in Google Scholar

[27] Rohr, O., Sawaya, B. E., Lecestre, D., Aunis, D., & Schaeffer, E. (1999). Dopamine stimulates expression of the human immunodeficiency virus type 1 via NF-κB in cells of the immune system. Nucleic Acids Research, 27, 3291–3299. DOI: 10.1093/nar/27.16.3291. http://dx.doi.org/10.1093/nar/27.16.329110.1093/nar/27.16.3291Search in Google Scholar

[28] Rolison, D. R. (1990). Zeolite-modified electrodes and electrodemodified zeolites. Chemical Reviews, 90, 867–878. DOI: 10.1021/cr00103a011. http://dx.doi.org/10.1021/cr00103a01110.1021/cr00103a011Search in Google Scholar

[29] Rover Júnior, L., Fernandes, J. C. B., de Oliviera-Neto, G., & Kubota, L. T. (2000). Development of a new FIA-potentiometric sensor for dopamine based on EVA-copper(II) ions. Journal of Electroanalytical Chemistry, 481, 34–41. DOI: 10.1016/s0022-0728(99)00474-x. http://dx.doi.org/10.1016/S0022-0728(99)00474-X10.1016/S0022-0728(99)00474-XSearch in Google Scholar

[30] Senthikumar, S., & Saraswathi, R. (2009). Electrochemical sensing of cadmium and lead ions at zeolite — modified electrodes: Optimization and field measurements. Sensors and Actuators B: Chemical, 141, 65–75. DOI: 10.1016/j.snb.2009.05.029. http://dx.doi.org/10.1016/j.snb.2009.05.02910.1016/j.snb.2009.05.029Search in Google Scholar

[31] Shahrokhian, S., & Karimi, M. (2004). Voltammetric studies of a cobalt(II)-4-methylsalophen modified carbon-paste electrode and its application for the simultaneous determination of cysteine and ascorbic acid. Electrochimica Acta, 50, 77–84. DOI: 10.1016/j.electacta.2004.07.015. http://dx.doi.org/10.1016/j.electacta.2004.07.01510.1016/j.electacta.2004.07.015Search in Google Scholar

[32] Sotomayor, M. D. P. T., Tanaka, A. A., & Kubota, L. T. (2002). Development of an amperometric sensor for phenol compounds using a Nafion membrane doped with copper dipyridyl complex as a biomimetic catalyst. Journal of Electroanalytical Chemistry, 536, 71–81. DOI: 10.1016/s0022-0728(02)01205-6. http://dx.doi.org/10.1016/S0022-0728(02)01205-610.1016/S0022-0728(02)01205-6Search in Google Scholar

[33] Suzuki, A., Ivandini, T. A., Yoshimi, K., Fujishima, A., Oyama, G., Nakazato, T., Hattori, N., Kitazawa, S., & Einaga, Y. (2007). Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Analytical Chemistry, 79, 8608–8615. DOI: 10.1021/ac071519h. http://dx.doi.org/10.1021/ac071519h10.1021/ac071519hSearch in Google Scholar

[34] Volkov, A., Tourillon, G., Lacaze, P. C., & Dubois, J. E. (1980). Electrochemical polymerization of aromatic amines: IR, XPS and PMT study of thin film formation on a Pt electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 115, 279–291. DOI: 10.1016/s0022-0728(80)80332-9. http://dx.doi.org/10.1016/S0022-0728(80)80332-910.1016/S0022-0728(80)80332-9Search in Google Scholar

[35] Walcarius, A. (1999). Zeolite modified electrodes in electroanalytical chemistry. Analytica Chimica Acta, 384, 1–16. DOI: 10.1016/s0003-2670(98)00849-6. http://dx.doi.org/10.1016/S0003-2670(98)00849-610.1016/S0003-2670(98)00849-6Search in Google Scholar

[36] Wang, J., & Walcarius, A. (1996a). Zeolite containing oxidasebased carbon paste biosensor. Journal of Electroanalytical Chemistry, 404, 237–242. DOI: 10.1016/0022-0728(95)04357-8. http://dx.doi.org/10.1016/0022-0728(95)04357-810.1016/0022-0728(95)04357-8Search in Google Scholar

[37] Wang, J., & Walcarius, A. (1996b). Zeolite-modified carbon paste elctrode for selective monitoring of dopamine. Journal of Electroanalytical Chemistry, 407, 183–187. DOI: 10.1016/0022-0728(95)04488-4. http://dx.doi.org/10.1016/0022-0728(95)04488-410.1016/0022-0728(95)04488-4Search in Google Scholar

[38] Wang, M. G., Xu, X. G., & Gao, J. (2007). Voltammetric studies of a novel bicopper complex modified glassy carbon electrode for the simultaneous determination of dopamine and ascorbic acid. Journal of Applied Electrochemistry, 37, 705–710. DOI: 10.1007/s10800-007-9303-7. http://dx.doi.org/10.1007/s10800-007-9303-710.1007/s10800-007-9303-7Search in Google Scholar

[39] Wang, G. F., Sun, J. G., Zhang, W., Jiao, S. F., & Fang, B. (2009). Simultaneous determination of dopamine, uric acid and ascorbic acid with LaFeO3 nanoparticles modified electrode. Microchimica Acta, 164, 357–362. DOI: 10.1007/s00604-008-0066-6. http://dx.doi.org/10.1007/s00604-008-0066-610.1007/s00604-008-0066-6Search in Google Scholar

[40] Wightman, R. M., May, L. J., & Michael, A. C. (1988). Detection of dopamine dynamics in brain. Analytical Chemistry, 60, 769A–779A. DOI: 10.1021/ac00164a718. 10.1021/ac00164a718Search in Google Scholar

[41] Wu, W., Zhu, H. R., Fan, L. Z., Liu, D. F., Renneberg, R., & Yang, S. H. (2007). Sensitive dopamine recognition by boronic acid functionalized multiwalled carbon nanotubes. Chemical Communications, 23, 2345–2347. DOI: 10.1039/b701254c. http://dx.doi.org/10.1039/b701254c10.1039/b701254cSearch in Google Scholar PubMed

[42] Xiao, Y. H., Guo, C. X., Li, C. M., Li, Y. B., Zhang, J., Xue, R. H., & Zhang, S. (2007). Highly sensitive and selective method to detect dopamine in the presence of ascorbic acid by a new polymeric composite film. Analytical Biochemistry, 371, 229–237. DOI: 10.1016/j.ab.2007.07.025. http://dx.doi.org/10.1016/j.ab.2007.07.02510.1016/j.ab.2007.07.025Search in Google Scholar PubMed

Published Online: 2013-10-30
Published in Print: 2014-2-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Synthesis and characterisation of a novel bi-nuclear copper2+ complex and its application as electrode-modifying agent for simultaneous voltammetric determination of dopamine and ascorbic acid
  2. Synthesis of ethyl-6-aminohexanoate from caprolactam and ethanol in near-critical water
  3. Vanadium dodecylamino phosphate: A novel efficient catalyst for synthesis of polyhydroquinolines
  4. Modelling and experimental validation of enantioseparation of racemic phenylalanine via a hollow fibre-supported liquid membrane
  5. Influence of operating conditions on performance of ceramic membrane used for water treatment
  6. Mercury associated with size-fractionated urban particulate matter: three years of sampling in Prague, Czech Republic
  7. Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes
  8. A new organically templated magnesium sulfate: structure, spectroscopic analysis, and thermal behaviour
  9. Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors
  10. Synthesis and photophysical properties of new Ln(III) (Ln = Eu(III), Gd(III), or Tb(III)) complexes of 1-amidino-O-methylurea
  11. Polycarbonate-based polyurethane elastomers: temperature-dependence of tensile properties
  12. Synthesis of a disulfide functionalized diacetylenic derivative of carbazole as building-block of polymerizable self-assembled monolayers
  13. Properties of poly(lactic acid-co-glycolic acid) film modified by blending with polyurethane
  14. Determination of 10B in lymphoma human cells after boron carrier treatment: comparison of 10BPA and immuno-nanoparticles
  15. Molecular modelling and spectral investigation of some triphenyltetrazolium chloride derivatives
  16. X-ray molecular structure and theoretical study of 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl]benzene
  17. 1,3-Dipolar cycloaddition between substituted phenyl azide and 2,3-dihydrofuran
Downloaded on 21.12.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0431-8/html
Scroll to top button