Startseite Molecular modelling and spectral investigation of some triphenyltetrazolium chloride derivatives
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Molecular modelling and spectral investigation of some triphenyltetrazolium chloride derivatives

  • Dorina Creanga EMAIL logo und Claudia Nadejde
Veröffentlicht/Copyright: 30. Oktober 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The molecular parameters of 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) and some compounds based on triphenylformazans (TPFs) — resulting from the enzymatic transformation of TTC, were subjected to comparative investigation on the basis of semi-empirical quantum-chemical simulations, revealing some changes in dipole moment and polarisability in the TPFs in comparison with TTC. Chemical shift due to substituents was discussed using electronic absorption bands in the UV-VIS range recorded for diluted solutions in various solvents as well as the absorption spectra recorded in the infrared range for KBr dispersions. The correlation of the spectral shift of the electronic absorption bands with a specific function on the solvent refractive index, as recommended by theoretical studies focused on solute-solvent interactions, revealed the major role played by dispersive and induction forces. For several solvents, a different behaviour could be assigned to specific interactions overlapping with universal solute-solvent interactions.

[1] Abe, T. (1965). Theory of solvent effects on molecular electronic spectra. Frequency shifts. Bulletin of the Chemical Society of Japan, 38, 1314–1318. DOI: 10.1246/bcsj.38.1314. http://dx.doi.org/10.1246/bcsj.38.131410.1246/bcsj.38.1314Suche in Google Scholar

[2] Awasthi, L. P., & Singh, S. P. (1982). Formazans and tetrazolium salts as potential antibacterial, antifungal, and antiviral agents. Zentralblatt für Mikrobiologie, 137, 503–507. DOI: 10.1016/s0232-4393(82)80008-5. 10.1016/S0232-4393(82)80008-5Suche in Google Scholar

[3] Bačkor, M., & Fahselt, D. (2005). Tetrazolium reduction as an indicator of environmental stress in lichens and isolated bionts. Environmental and Experimental Botany, 53, 125–133. DOI: 10.1016/j.envexpbot.2004.03.007. http://dx.doi.org/10.1016/j.envexpbot.2004.03.00710.1016/j.envexpbot.2004.03.007Suche in Google Scholar

[4] Bakhshiev, N. G. (1972). Spektroskopiya mezhmolekulyarnykh vzaimodeistvii. Leningrad, Russia: Izd. Nauka. (in Russian) Suche in Google Scholar

[5] Bharadwaj, S. D. (2002). Synthesis and biological activities of some new formazans, Part I. Asian Journal of Chemistry, 14, 767–770. Suche in Google Scholar

[6] Bhupathiraju, V. K., Hernandez, M., Landfear, D., & Alvarez-Cohen, L. (1999). Application of a tetrazolium dye as an indicator of viability in anaerobic bacteria. Journal of Microbiological Methods, 37, 231–243. DOI: 10.1016/s0167-7012(99)00069-x. http://dx.doi.org/10.1016/S0167-7012(99)00069-X10.1016/S0167-7012(99)00069-XSuche in Google Scholar

[7] Burdock, T., Brooks, M., Ghaly, A., & Deepika, D. (2011). Effect of assay conditions on the measurement of dehydrogenase activity of Streptomyces venezuelae using triphenyl tetrazolium chloride. Advances in Bioscience and Biotechnology, 2, 214–225. DOI: 10.4236/abb.2011.24032. http://dx.doi.org/10.4236/abb.2011.2403210.4236/abb.2011.24032Suche in Google Scholar

[8] Coates, J. P. (2000). Interpretation of infrared spectra, a practical approach. In R. A. Meyers (Ed.), Encyclopedia of analytical chemistry (pp. 10815–10837). Chichester, UK: Wiley. Suche in Google Scholar

[9] Erkoç, Ş., Tezcan, H., Çalişir, E. D., & Erkoç, F. (2006). Synthesis of bis-formazan molecule and quantum-chemical calculation. International Journal of Pure and Applied Chemistry, 1, 37–44. Suche in Google Scholar

[10] Frederiks, W. M., van Marle, J., van Oven, C., Comin-Anduix, B., & Cascante, M. (2006). Improved localization of glucose-6-phosphate dehydrogenase activity in cells with 5-cyano-2,3-ditolyl-tetrazolium chloride as fluorescent redox dye reveals its cell cycle-dependent regulation. Journal of Histochemistry & Cytochemistry, 54, 47–52. DOI: 10.1369/jhc.5a6663.2005. http://dx.doi.org/10.1369/jhc.5A6663.200510.1369/jhc.5A6663.2005Suche in Google Scholar

[11] Gil-Agustí, M., Esteve-Romero, J., & Abraham, M. H. (2006). Solute-solvent interactions in micellar liquid chromatography: Characterization of hybrid micellar systems of sodium dodecyl sulfate-pentanol. Journal of Chromatography A, 1117, 47–55. DOI: 10.1016/j.chroma.2006.03.046. http://dx.doi.org/10.1016/j.chroma.2006.03.04610.1016/j.chroma.2006.03.046Suche in Google Scholar

[12] Gökçe, G., Durmuş, Z., Tezcan, H., Kiliç, E., & Yilmaz, H. (2005). Electrochemical investigation of 1,3,5-triphenylformazan and its nitro derivatives in dimethyl sulfoxide. Analytical Sciences, 21, 685–688. DOI: 10.2116/analsci.21.685. http://dx.doi.org/10.2116/analsci.21.68510.2116/analsci.21.685Suche in Google Scholar

[13] Hypercube (2011). HyperChem version 8.0.10 Package [computer software], Gainesville, FL, USA: Hypercube. Suche in Google Scholar

[14] Jones, P. H., & Prasad, D. (1969). The use of tetrazolium salts as a measure of sludge activity. Journal (Water Pollution Control Federation), 41, R441–R449. Suche in Google Scholar

[15] Kaliszan, R. (1993). Quantitative structure-retention relationships applied to reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 656, 417–435. DOI: 10.1016/0021-9673(93)80812-m. http://dx.doi.org/10.1016/0021-9673(93)80812-M10.1016/0021-9673(93)80812-MSuche in Google Scholar

[16] King, R. A., & Murrin, B. (2004). A computational study of the structure and synthesis of formazans. Journal of Physical Chemistry A, 108, 4961–4965. DOI: 10.1021/jp0400622. http://dx.doi.org/10.1021/jp040062210.1021/jp0400622Suche in Google Scholar

[17] Mahmoud, N. S., & Ghaly, A. E. (2004). Influence of temperature and pH on the nonenzymatic reduction of triphenyltetrazolium chloride. Biotechnology Progress, 20, 346–353. DOI: 10.1021/bp030029h. http://dx.doi.org/10.1021/bp030029h10.1021/bp030029hSuche in Google Scholar PubMed

[18] Mariappan, G., Korim, R., Joshi, N. M., Alam, F., Hazarika, R., Kumar, D., & Uriah, T. (2010). Synthesis and biological evaluation of formazan derivatives. Journal of Advanced Pharmaceutical Technology and Research, 1, 396–400. DOI: 10.4103/0110-5558.76438. http://dx.doi.org/10.4103/0110-5558.7643810.4103/0110-5558.76438Suche in Google Scholar PubMed PubMed Central

[19] Mataga, N., & Kubota, T. (1970). Molecular interactions and electronic spectra. New York, NY, USA: Marcel Dekker. Suche in Google Scholar

[20] McRae, E. G. (1957). Theory of solvent effects of molecular electronic spectra. Frecquency shifts. Journal of Physical Chemistry, 61, 562–572. DOI: 10.1021/j150551a012. http://dx.doi.org/10.1021/j150551a01210.1021/j150551a012Suche in Google Scholar

[21] Onsager, L. (1936). Electric moments of molecules in liquids. Journal of the American Chemical Society, 58, 1486–1493. DOI: 10.1021/ja01299a050. http://dx.doi.org/10.1021/ja01299a05010.1021/ja01299a050Suche in Google Scholar

[22] Pechmann, H. V., & Runge, P. (1894). Oxydation der Formazylverbindungen. Berichte der Deutschen Chemischen Gesellschaft, 27, 323–324. DOI: 10.1002/cber.18940270165. (in German) http://dx.doi.org/10.1002/cber.1894027016510.1002/cber.18940270165Suche in Google Scholar

[23] Pervova, I. G., Barachevskii, V. A., Melkozerov, S. A., Lipunova, G. N., Sigeikin, G. I., & Lipunov, I. N. (2010). A spectralkinetic study of the photochemical properties of 1-aryl-3-alkyl-5-(benzothiazol-2-yl)formazans. High Energy Chemistry, 44, 22–24. DOI: 10.1134/s0018143910010042. http://dx.doi.org/10.1134/S001814391001004210.1134/S0018143910010042Suche in Google Scholar

[24] Piaru, S. P., Mahmud, R., & Perumal, S. (2012). Determination of antimicrobial activity of essential oil of Myristica fragrans Houtt. using tetrazolium microplate assay and its cytotoxic activity against Vero cell line. International Journal of Pharmacology, 8, 572–576. DOI: 10.3923/ijp.2012.572.576. http://dx.doi.org/10.3923/ijp.2012.572.57610.3923/ijp.2012.572.576Suche in Google Scholar

[25] Praveen-Kumar, & Tarafdar, J. C. (2003). 2,3,5-Triphenyltetrazolium chloride (TTC) as electron acceptor of culturable soil bacteria, fungi and actinomycetes. Biology and Fertility of Soils, 38, 186–189. DOI: 10.1007/s00374-003-0600-y. http://dx.doi.org/10.1007/s00374-003-0600-y10.1007/s00374-003-0600-ySuche in Google Scholar

[26] Reichardt, C. (2003). Solvents and solvent effects in organic chemistry (3rd ed.). Weinheim, Germany: Wiley-VCH. Suche in Google Scholar

[27] Ruf, M., & Brunner, I. (2003). Vitality of tree fine roots: reevaluation of the tetrazolium test. Tree Physiology, 23, 257–263. DOI: 10.1093/treephys/23.4.257. http://dx.doi.org/10.1093/treephys/23.4.25710.1093/treephys/23.4.257Suche in Google Scholar PubMed

[28] Şenöz, H. (2012). The chemistry of formazans and tetrazolium salts. Hacettepe Journal of Biology and Chemistry, 40, 293–301. Suche in Google Scholar

[29] Sigeikin, G. I., Lipunova, G. N., & Pervova, I. G. (2006). Formazans and their metal complexes. Russian Chemical Reviews, 75, 885–900. DOI: 10.1070/rc2006v075n10abeh003612. http://dx.doi.org/10.1070/RC2006v075n10ABEH00361210.1070/RC2006v075n10ABEH003612Suche in Google Scholar

[30] Snyder, L. R., Carr, P. W., & Rutan, S. C. (1993). Solvatochromically based solvent-selectivity triangle. Journal of Chromatography A, 656, 537–547. DOI: 10.1016/0021-9673(93)80818-s. http://dx.doi.org/10.1016/0021-9673(93)80818-S10.1016/0021-9673(93)80818-SSuche in Google Scholar

[31] Suppan, P. (1990). Invited review solvatochromic shifts: The influence of the medium on the energy of electronic states. Journal of Photochemistry and Photobiology A: Chemistry, 50, 293–330. DOI: 10.1016/1010-6030(90)87021-3. http://dx.doi.org/10.1016/1010-6030(90)87021-310.1016/1010-6030(90)87021-3Suche in Google Scholar

[32] Tezcan, H., Can, Ş., & Tezcan, R. (2002). The synthesis and spectral properties determination of 3-substituted phenyl-1,5-diphenylformazans. Dyes and Pigments, 52, 121–127. DOI: 10.1016/s0143-7208(01)00074-2. http://dx.doi.org/10.1016/S0143-7208(01)00074-210.1016/S0143-7208(01)00074-2Suche in Google Scholar

[33] Tezcan, H., & Ozkan, N. (2003). Substituent effects on the spectral properties of some 3-substituted formazans. Dyes and Pigments, 56, 159–166. DOI: 10.1016/s0143-7208(02)00131-6. http://dx.doi.org/10.1016/S0143-7208(02)00131-610.1016/S0143-7208(02)00131-6Suche in Google Scholar

[34] Tezcan, H. (2008). Synthesis and spectral properties of some bis-substituted formazans. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69, 971–979. DOI: 10.1016/j.saa.2007.05.061. http://dx.doi.org/10.1016/j.saa.2007.05.06110.1016/j.saa.2007.05.061Suche in Google Scholar PubMed

[35] Tezcan, H., & Uzluk, E. (2008). The synthesis and spectral properties of 1,3-substituted phenyl-5-phenylformazans and their Ni(II) complexes. Dyes and Pigments, 76, 733–740. DOI: 10.1016/j.dyepig.2007.01.016. http://dx.doi.org/10.1016/j.dyepig.2007.01.01610.1016/j.dyepig.2007.01.016Suche in Google Scholar

[36] Tezcan, H., Uzluk, E., & Aksu, M. L. (2008). Electrochemical and structural properties of 1,3-substituted (-Cl, — Br) phenyl-5-phenylformazans. Journal of Electroanalytical Chemistry, 619–620, 105–116. DOI: 10.1016/j.jelechem.2008.03.013. http://dx.doi.org/10.1016/j.jelechem.2008.03.01310.1016/j.jelechem.2008.03.013Suche in Google Scholar

[37] Tezcan, H., & Aksu, M. L. (2010). Electrochemical properties of 1-(o-,m-,p-nitrophenyl)-3-(m-nitrophenyl)-5-phenylformazans and their nickel complexes. Turkish Journal of Chemistry, 34, 465–479. DOI: 10.3906/kim-0903-4. 10.3906/kim-0903-4Suche in Google Scholar

Published Online: 2013-10-30
Published in Print: 2014-2-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Synthesis and characterisation of a novel bi-nuclear copper2+ complex and its application as electrode-modifying agent for simultaneous voltammetric determination of dopamine and ascorbic acid
  2. Synthesis of ethyl-6-aminohexanoate from caprolactam and ethanol in near-critical water
  3. Vanadium dodecylamino phosphate: A novel efficient catalyst for synthesis of polyhydroquinolines
  4. Modelling and experimental validation of enantioseparation of racemic phenylalanine via a hollow fibre-supported liquid membrane
  5. Influence of operating conditions on performance of ceramic membrane used for water treatment
  6. Mercury associated with size-fractionated urban particulate matter: three years of sampling in Prague, Czech Republic
  7. Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes
  8. A new organically templated magnesium sulfate: structure, spectroscopic analysis, and thermal behaviour
  9. Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors
  10. Synthesis and photophysical properties of new Ln(III) (Ln = Eu(III), Gd(III), or Tb(III)) complexes of 1-amidino-O-methylurea
  11. Polycarbonate-based polyurethane elastomers: temperature-dependence of tensile properties
  12. Synthesis of a disulfide functionalized diacetylenic derivative of carbazole as building-block of polymerizable self-assembled monolayers
  13. Properties of poly(lactic acid-co-glycolic acid) film modified by blending with polyurethane
  14. Determination of 10B in lymphoma human cells after boron carrier treatment: comparison of 10BPA and immuno-nanoparticles
  15. Molecular modelling and spectral investigation of some triphenyltetrazolium chloride derivatives
  16. X-ray molecular structure and theoretical study of 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl]benzene
  17. 1,3-Dipolar cycloaddition between substituted phenyl azide and 2,3-dihydrofuran
Heruntergeladen am 4.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0429-2/html
Button zum nach oben scrollen