Startseite Strain-rate sensitivity of ultrafine-grained materials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Strain-rate sensitivity of ultrafine-grained materials

  • H. W. Höppel EMAIL logo , J. May , P. Eisenlohr und M. Göken
Veröffentlicht/Copyright: 28. Januar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The strain-rate sensitivity of commercial purity Aluminium (Al 99.5) and of α-iron, with both conventional (CG) and ultrafine (UFG) grain sizes, are investigated by compression and tension tests at different temperatures. Microstructural investigations were performed before and after compression testing in order to investigate the microstructural stability. Pronounced strain rate sensitivity was found for UFG Al at room temperature as well as at elevated temperatures, while for UFG α-iron an enhanced strain-rate sensitivity was found only at elevated temperatures.


Dr. H. W. Höppel Institut für Werkstoffwissenschaften, Lehrstuhl I Martensstr. 5, D-91058 Erlangen, Germany Tel.: +49 9131 852 7503 Fax: +49 9131 852 7504

Dedicated to Professor Wolfgang Blum on the occasion of his 65th birthday


  1. The authors acknowledge the financial support by the Deutsche Forschungsgemeinschaft DFG, Contract No. GO 741/10-1, within the Research Unit Program “Mechanische Eigenschaften und Grenzflächen ultrafeinkörniger Werkstoffe”. The authors are very grateful to H. Mughrabi for his scientific input to the current work.

References

[1] M.J. Zehetbauer, R.Z. Valiev (Eds.): Nanomaterials by severe plastic deformation. Proc. of Int. Conf. NANOSPD 2, Wiley VCH; Weinheim (2004).10.1002/3527602461Suche in Google Scholar

[2] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Progress in Materials Science 45 (2000) 103.10.1016/S0079-6425(99)00007-9Suche in Google Scholar

[3] T.C. Lowe, R.Z. Valiev (Eds.): Investigations and Applications of Severe Plastic Deformation, Kluwer Academic Publishers, (2000).10.1007/978-94-011-4062-1Suche in Google Scholar

[4] T.C. Lowe, R.Z. Valiev: JOM 52 (4) (2000) 27.10.1007/s11837-000-0127-8Suche in Google Scholar

[5] Y.J. Li, X.H. Zeng, W. Blum: Acta Mater. 52 (2004) 5009.10.1016/j.actamat.2004.07.003Suche in Google Scholar

[6] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon: Acta Mater. 46 (1998) 3317.10.1016/S1359-6454(97)00494-1Suche in Google Scholar

[7] H.W. Höppel, J. May, M. Göken: Adv. Eng. Mat. 6 (2004) 781.10.1002/adem.200306582Suche in Google Scholar

[8] V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy, V.I. Kopylov:Russian Metallurgy (engl. transl.) 1 (1981) 115.Suche in Google Scholar

[9] R.Z. Valiev, N.A. Krasilnikov, N.K. Tsenev: Mater. Sci. and Eng. A 137 (1991) 35.10.1016/0921-5093(91)90316-FSuche in Google Scholar

[10] R.Z. Valiev, E.V. Kozlov, Y.F. Ivanov, J. Lian, A.A. Nazarov, B. Baudelet: Acta Metall. et Mater. 42 (1994) 2467.10.1016/0956-7151(94)90326-3Suche in Google Scholar

[11] R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, T.C. Lowe: J. Mater. Res.17 (2002) 5.10.1557/JMR.2002.0002Suche in Google Scholar

[12] E.W. Hart: Acta Metall. 15 (1967) 351.10.1016/0001-6160(67)90211-8Suche in Google Scholar

[13] W. Blum, in:H. Mughrabi (Ed.) Plastic deformation and fracture of materials. R.W. Cahn, P. Haasen, E.J. Kramer (Eds.). Materials Science and technology. Weinheim:VCH Verlagsgesellschaft; (1993) p. 359.Suche in Google Scholar

[14] Z. Budrovic, H. v. Swygenhoven, P.M. Derlet, S. v. Petegem, B. Schmitt: Science 304 (2004) 273.10.1126/science.1095071Suche in Google Scholar

[15] R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh: Acta Mater. 51 (2003) 5159.10.1016/S1359-6454(03)00365-3Suche in Google Scholar

[16] E. Ma: Scripta. Mater. 49 (2003) 663.10.1016/S1359-6462(03)00396-8Suche in Google Scholar

[17] Q. Wei, S. Cheng, K.T. Ramesh, E. Ma: Mater. Sci. Eng. A 381 (2004) 71.10.1016/j.msea.2004.03.064Suche in Google Scholar

[18] A. Seeger: Z. Metallkd. 72 (1981) 369.Suche in Google Scholar

[19] B. Šesták, A. Seeger: Z. Metallkd. 69 (1978) 195.Suche in Google Scholar

[20] A. Seeger: Phil. Mag. A 45 (1954) 771.10.1080/14786440708520489Suche in Google Scholar

[21] H. Matsui, S. Moriya, S. Takaki, K. Kimura: Trans JIM 19 (1978) 163.10.2320/matertrans1960.19.163Suche in Google Scholar

[22] F. Ackermann, H. Mughrabi, A. Seeger: Acta metall. 31 (1983) 1353.10.1016/0001-6160(83)90006-8Suche in Google Scholar

[23] F. Ackermann: Doctorate Thesis Universität Stuttgart (1981).Suche in Google Scholar

[24] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon: Mater. Sci. Eng. A 257 (1998) 328.10.1016/S0921-5093(98)00750-3Suche in Google Scholar

[25] J. May, H.W. Höppel, M. Göken: Scripta Mater. (2005) accepted for publication.Suche in Google Scholar

[26] J. May, H.W. Höppel, M. Göken, in: Z. Horita, T.G. Langdon (Eds.), Proc. of 3rd Int. Conf on Nanomaterials by Severe Plastic Deformation NANOSPD 3, Fukuoka, Japan, 2005, accepted for publication.Suche in Google Scholar

[27] W. Blum, F. Roters: phys. stat. sol. (a) 184 (2001) 257.10.1002/1521-396X(200103)184:1<257::AID-PSSA257>3.0.CO;2-ISuche in Google Scholar

[28] W. Blum, P. Eisenlohr, F. Breutinger: Metall. Trans A 33 (2002) 291.10.1007/s11661-002-0090-9Suche in Google Scholar

[29] P. Eisenlohr, W. Blum: Mater. Sci. and Eng. (2005), accepted for publicationSuche in Google Scholar

[30] H.S. Kim, W.S. Ryu, M. Janacek, S.C. Baik, Y. Estrin: Adv. Eng.Mater. 7 (2005) 43.10.1002/adem.200400146Suche in Google Scholar

Received: 2005-03-17
Accepted: 2005-03-04
Published Online: 2022-01-28

© 2005 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles Basic
  5. Identifying creep mechanisms in plastic flow
  6. A unified microstructural metal plasticity model applied in testing, processing, and forming of aluminium alloys
  7. Implications of non-negligible microstructural variations during steady-state deformation
  8. Tertiary creep of metals and alloys
  9. Interactions between particles and low-angle dislocation boundaries during high-temperature deformation
  10. Strain-rate sensitivity of ultrafine-grained materials
  11. Transient plastic flow at nominally fixed structure due to load redistribution
  12. Vacancy concentrations determined from the diffuse background scattering of X-rays in plastically deformed copper
  13. Effect of heating rate in α + γ dual-phase field on lamellar microstructure and creep resistance of a TiAl alloy
  14. About stress reduction experiments during constant strain-rate deformation tests
  15. Finite-element modelling of anisotropic single-crystal superalloy creep deformation based on dislocation densities of individual slip systems
  16. Variational approach to subgrain formation
  17. Articles Applied
  18. Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires
  19. Creep properties at 125 °C of an AM50 Mg alloy modified by Si additions
  20. Dependence of mechanical strength on grain structure in the γ′ and oxide dispersions-trengthened nickelbase superalloy PM 3030
  21. On the improvement of the ductility of molybdenum by spinel (MgAl2O4) particles
  22. Hot workability and extrusion modelling of magnesium alloys
  23. Characterization of hot-deformation behaviour of Zircaloy-2: a comparison between kinetic analysis and processing maps
  24. Requirements for microstructural investigations of steels used in modern power plants
  25. Influence of Lüders band formation on the cyclic creep behaviour of a low-carbon steel for piping applications
  26. Creep and creep rupture behaviour of 650 °C ferritic/martensitic super heat resistant steels
  27. Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites
  28. Notifications/Mitteilungen
  29. Personal/Personelles
  30. News/Aktuelles
  31. Conferences/Konferenzen
Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2005-0101/html?lang=de
Button zum nach oben scrollen