Abstract
The hot working of commercial Mg alloys differs from creep in so far that twinning is much more prevalent in the early stages and dynamic recrystallization (DRX) becomes extensive above 400 °C. Subgrains form mainly near the grain boundaries and have similar dependence on stress; they were larger in hot working tests because of the much higher temperatures. Extrusion is ideal for breaking down the cast structure as a result of the high compressive mode to minimize cracking at segregated particles and to create a deformation zone reaching near 500 °C to ensure DRX for grain refinement. The constitutive equations and microstructures from torsion testing can be utilized in modeling to guide optimization of extrusion processing.
-
The authors acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada, of the Deutsche Forschungsgemeinschaft and of the Alexander von Humboldt Foundation.
References
[1] W. Blum, in: H. Mughrabi (Ed.), Plastic Deformation and Fracture of Materials, VCH, Weinheim (1993) 359.Search in Google Scholar
[2] W. Blum, in: R.W. Arsenault et al. (Eds.), The Johannes Weertman Symposium, TMS-AIME, Warrendale, PA (1996) 103.Search in Google Scholar
[3] S. Straub, W. Blum, in: H.J. McQueen et al. (Eds.), Hot Workability of Steels and Light Alloys-Composites, Met. Soc. CIM, Montreal (1996) 189.Search in Google Scholar
[4] M. Meier, Q. Zhu, W. Blum: Z. Metallkd. 84 (1993) 263.Search in Google Scholar
[5] J. Hausselt, W. Blum: Acta Met. 14 (1976) 1027.10.1016/0001-6160(76)90133-4Search in Google Scholar
[6] W. Blum, H.J. McQueen, in: J.H. Driver et al. (Eds.), Aluminum Alloys, Physical and Mechanical Properties (ICAA5), Mat. Sci. Forum, 217–222 (1996) 31.10.4028/www.scientific.net/MSF.217-222.31Search in Google Scholar
[7] W. Blum, Q. Zhu, R. Merkel, H.J. McQueen: Z. Metalkd. 87 (1996) 341.Search in Google Scholar
[8] W. Blum, Q. Zhu, R. Merkel, H.J. McQueen: Mat. Sci. Eng. A 205 (1996) 23.10.1016/0921-5093(95)09990-5Search in Google Scholar
[9] H.J. McQueen, W. Blum, in: T.R. McNelley (Ed.), Recrystallization and Related Topics (Rex ’96), Monterey Inst. Advanced Studies, CA (1997) 123.Search in Google Scholar
[10] H.J. McQueen, W. Blum, in: T. Sato (Ed.), Al Alloys Physical and Mechanical Properties (ICAA6), Japan Inst. Metals, Japan (1998) 99.Search in Google Scholar
[11] H.J. McQueen, W. Blum, Q. Zhu, V. Demuth, in: J.J. Jonas, T.R. Bieler, K.J. Bowman (Eds.), Advances in Hot Deformation Textures and Microstructures, TMS-AIME, Warrendale, PA (1993) 235.Search in Google Scholar
[12] H.J. McQueen, W. Blum: Mater. Sci. Eng. A 290 (2000) 95.10.1016/S0921-5093(00)00933-3Search in Google Scholar
[13] H.J. McQueen, W. Blum: Aluminium 80 [10] (2004) 1151.10.1016/S0001-2092(06)60700-XSearch in Google Scholar
[14] E.V. Konopleva, H.J. McQueen, W. Blum: Microstructural Sci. 22 (1995) 297.Search in Google Scholar
[15] H.J. McQueen, in: T.G. Langdon, H.D. Merchant (Eds.), Hot Deformation of Aluminum Alloys, TMS-AIME, Warrendale, PA (1991) 31.Search in Google Scholar
[16] H.J. McQueen, D.L. Bourell: J. Met. 39 [7] (1987) 28.10.1007/BF03257647Search in Google Scholar
[17] W. Blum, P. Weidinger, B. Watzinger, R. Sedlacek, R. Rosch, H.-G. Haldenwanger: Z. Metallkd. 88 (1997) 636.Search in Google Scholar
[18] W. Blum, B. Watzinger, P. Weidinger, in: B.L. Mordike, K.U. Kainer (Eds.), Magnesium Alloys and their Applications, Werkstoff-Informationsgesellschaft, Frankfurt (1998) 49.Search in Google Scholar
[19] P. Zhang, B. Watzinger, Q.P. Kong, W. Blum: Key Engineering Mat. 171–174 (2000) 609.Search in Google Scholar
[20] P. Zhang, B. Watzinger, W. Blum: Phys. Stat. Sol. A 175 (1999) 481.10.1002/(SICI)1521-396X(199910)175:2<481::AID-PSSA481>3.0.CO;2-JSearch in Google Scholar
[21] W. Blum, B. Watzinger, P. Zhang: Adv. Eng. Mat. 2 (2000) 349.10.1002/1527-2648(200006)2:6<349::AID-ADEM349>3.0.CO;2-GSearch in Google Scholar
[22] W. Blum, P. Zhang, B. Watzinger, B.V. Grossmann, H.G. Haldenwanger: (ICSMA12, M. Mills), Mater. Sci. Eng. A 319 (2001) 735.10.1016/S0921-5093(00)02016-5Search in Google Scholar
[23] W. Blum, B. Watzinger, P. Zhang, B.V. Grossmann, H. Lipowsky, H.G. Haldenwanger, in: Y. Kojima, T. Aizawa, S. Kamado (Eds.), Magnesium Alloys 2000, (Proc. First Nagaoka Intnl. Workshop on Magnesium Platform Science and Technology 2000), Mat. Sci. Forum, 350 –351 (2000) 141.10.4028/www.scientific.net/MSF.350-351.141Search in Google Scholar
[24] A. Mwembela, H.J. McQueen, in: C. Bickert (Ed.), Light Metals Processing and Applications, Met. Soc. CIMM, Montreal (1993) 523.Search in Google Scholar
[25] A. Mwembela, H. J. McQueen, in: H.J. McQueen, E.V. Konopleva N.D. Ryan (eds.), Hot Workability of Steels and Light Alloys-Composites, Met. Soc. CIM, Montreal (1996) 181.Search in Google Scholar
[26] A. Mwembela, E.V. Konopleva, H.J. McQueen: Scripta Metal. Mater. 37 (1997) 1789.10.1016/S1359-6462(97)00344-8Search in Google Scholar
[27] H.J. McQueen, A. Mwembela, M.M. Myshlyaev, E.V. Konopleva, in: B.L. Mordike, K.L. Kainer (Eds.), Magnesium Alloys and Their Applications, Wolfsburg, Germany, Werkstoff Info-Gesellschaft, Frankfurt (1998) 201.Search in Google Scholar
[28] H.J. McQueen, M. Myshlyaev, M. Sauerborn, A. Mwembela, in: H. Kaplan et al. (Eds.), Magnesium Technology 2000, TMS-AIME Warrendale PA (2000) 355.Search in Google Scholar
[29] M.M. Myshlyaev, H.J. McQueen, A. Mwembela, E.V. Konopleva: Mater. Sci. Eng. A 337 (2002) 121.10.1016/S0921-5093(02)00007-2Search in Google Scholar
[30] M.M. Myshlyaev, A. Mwembela, H.J. McQueen: Can. Metal. Quart. 42 (2002) 97.10.1179/cmq.2003.42.1.97Search in Google Scholar
[31] A. Mwembela, M.M Myshlyaev, H.J. McQueen, in: T. Lewis, M. Charron (Eds.), Enabling Technologies for Light Metals and Composite Materials, Met. Soc. CIM, Montreal (2002) 915.Search in Google Scholar
[32] M. Sauerborn, H.J. McQueen, in: M. Bouchard, A. Faucher (Eds.), Light Metals 1999, Met. Soc. CIMM, Montreal (1999) 549.Search in Google Scholar
[33] “DEFORM: Design Environment for Forming”, Scientific Forming Technologies Corporation, Columbus, OH.Search in Google Scholar
[34] M. Sauerborn, H.J. McQueen: Mater. Sci. Tech. 14 (1998) 1029.10.1179/026708398790613371Search in Google Scholar
[35] E. Herba, H.J. McQueen: Mater. Sci. Tech. 14 (1998) 1057.10.1179/026708398790613524Search in Google Scholar
[36] E.M. Herba, H.J. McQueen: Mater. Sci. Eng. A 372 (2004) 1.10.1016/j.msea.2003.08.006Search in Google Scholar
[37] H.J. McQueen, Y. Yao, in: J.F. Nie et al. (Eds.), Aluminum Alloys–Physical Mechanical Properties (ICAA9), Monash University, Melbourne, Australia (2004) 610.Search in Google Scholar
[38] H.J. McQueen, E.V. Konopleva, in: Y. Verreman et al. (Eds.), Mathematical Modeling of Metal Processing and Manufacturing, Met. Soc. CIM, Montreal (2000) (published electronically).Search in Google Scholar
[39] H.J. McQueen, M.M. Myshlyaev, E. Konopleva, P. Sakaris: Can. Met. Quart. 37 (1998) 125.Search in Google Scholar
[40] H.J. McQueen, D.L. Bourell: J. Mat. Shaping, Tech. 5 (1987) 53.10.1007/BF02833686Search in Google Scholar
[41] O.A. Kaibyshev, in: T. Chandra (Ed.), Recrystallization (’90) in Metals and Materials, TMS-AIME, Warrendale, PA (1990) 855.Search in Google Scholar
[42] R.O. Kaibyshev, B.K. Solokov: Phys. Met. Metall. 74 [1] (1992) 72.Search in Google Scholar
[43] R.O. Kaibyshev, O.Sh. Sitidikov, A.M. Galiev: Phys. Met. Metall. 80 (1995) 470.Search in Google Scholar
[44] S.E. Burrows, F.J. Humphreys, S.W. White, in: P. Haasen et al. (Eds.), Strength of Metals and Alloys (ICSMA5), Pergamon Press, Oxford (1979) 607.10.1016/B978-1-4832-8412-5.50104-1Search in Google Scholar
[45] S.E. Ion, F.J. Humphreys, S.H. White: Acta Metal. 30 (1982) 1909.10.1016/0001-6160(82)90031-1Search in Google Scholar
[46] F.J. Humphreys, in: N. Hansen et al. (Eds.), Deformation of Polycrystals, RISO Natl. Lab., Roskilde, Denmark (1981) 305.Search in Google Scholar
[47] H.J. McQueen, E.V. Konopleva, in: J. Hryn (Ed.), Magnesium Technology 2001, TMS-AIME, Warrandale, PA (2001) 227.Search in Google Scholar
[48] S.S. Vagarali, T.G. Langdon: Acta Metal. 29 (1981) 1969.10.1016/0001-6160(81)90034-1Search in Google Scholar
[49] S.S. Vagarali, T.G. Langdon: Acta Metal. 30 (1982) 1157.10.1016/0001-6160(82)90009-8Search in Google Scholar
[50] H.J. McQueen, E.V. Konopleva, in: D.S. Wilkinson et al. (Eds.), Symp. Advances in Industrial Materials, Met. Soc. CIMM, Montreal (1998) 149.Search in Google Scholar
[51] H. Sato, M. Suzuki, K. Maruyama, H. Oikawa: Key. Eng. Mater. 171 (2000) 601.Search in Google Scholar
[52] H. Sato, Y. Masuda, H. Oikawa, in: Y. Hosoi et al. (Eds.), Aspects of High Temp. Deformation and Fracture in Crystalline Materials (JMIS7), Japan Inst. Metals. Japan (1993) 107.Search in Google Scholar
[53] H.J. McQueen, O.C. Celliers: Materials Forum (Australia) 17 (1993) 1.Search in Google Scholar
[54] H.J. McQueen, O.C. Celliers: Can. Metal. Quart. 36 (1997) 73.Search in Google Scholar
[55] R. Chadwick: Metal. Review 37 (1959) 75.Search in Google Scholar
[56] D.S. Salonine, H.J. McQueen, in: J.F. Nie et al. (Eds.), Aluminum Alloys: Physical Mechanical Properties (ICAA9), Monash Univ. Melbourne, Australia (2004) 1086.Search in Google Scholar
[57] H.J. McQueen, M.E. Kassner, in: K. Jata, et al. (Eds.), Light Weight Alloys for Aerospace Application, TMS-AIME, Warrendale, PA (2001) 63.Search in Google Scholar
[58] H.J. McQueen: JOM (J. Metals) 50 [6] (1998) 28.10.1007/s11837-998-0124-xSearch in Google Scholar
[59] B.M. Closset, J.-F. Peey, in: B.L. Mordike, K.L. Kainer (Eds.), Magnesium Alloys and Their Applications, Wolfsburg, Germany, Werkstoff Info.-Gesellschaft, Frankfurt (1998) 195.Search in Google Scholar
[60] K. Buehler: Materials and Manufacturing Processes 4 (1989) 603.10.1080/10426918908956317Search in Google Scholar
© 2005 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Identifying creep mechanisms in plastic flow
- A unified microstructural metal plasticity model applied in testing, processing, and forming of aluminium alloys
- Implications of non-negligible microstructural variations during steady-state deformation
- Tertiary creep of metals and alloys
- Interactions between particles and low-angle dislocation boundaries during high-temperature deformation
- Strain-rate sensitivity of ultrafine-grained materials
- Transient plastic flow at nominally fixed structure due to load redistribution
- Vacancy concentrations determined from the diffuse background scattering of X-rays in plastically deformed copper
- Effect of heating rate in α + γ dual-phase field on lamellar microstructure and creep resistance of a TiAl alloy
- About stress reduction experiments during constant strain-rate deformation tests
- Finite-element modelling of anisotropic single-crystal superalloy creep deformation based on dislocation densities of individual slip systems
- Variational approach to subgrain formation
- Articles Applied
- Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires
- Creep properties at 125 °C of an AM50 Mg alloy modified by Si additions
- Dependence of mechanical strength on grain structure in the γ′ and oxide dispersions-trengthened nickelbase superalloy PM 3030
- On the improvement of the ductility of molybdenum by spinel (MgAl2O4) particles
- Hot workability and extrusion modelling of magnesium alloys
- Characterization of hot-deformation behaviour of Zircaloy-2: a comparison between kinetic analysis and processing maps
- Requirements for microstructural investigations of steels used in modern power plants
- Influence of Lüders band formation on the cyclic creep behaviour of a low-carbon steel for piping applications
- Creep and creep rupture behaviour of 650 °C ferritic/martensitic super heat resistant steels
- Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites
- Notifications/Mitteilungen
- Personal/Personelles
- News/Aktuelles
- Conferences/Konferenzen
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Identifying creep mechanisms in plastic flow
- A unified microstructural metal plasticity model applied in testing, processing, and forming of aluminium alloys
- Implications of non-negligible microstructural variations during steady-state deformation
- Tertiary creep of metals and alloys
- Interactions between particles and low-angle dislocation boundaries during high-temperature deformation
- Strain-rate sensitivity of ultrafine-grained materials
- Transient plastic flow at nominally fixed structure due to load redistribution
- Vacancy concentrations determined from the diffuse background scattering of X-rays in plastically deformed copper
- Effect of heating rate in α + γ dual-phase field on lamellar microstructure and creep resistance of a TiAl alloy
- About stress reduction experiments during constant strain-rate deformation tests
- Finite-element modelling of anisotropic single-crystal superalloy creep deformation based on dislocation densities of individual slip systems
- Variational approach to subgrain formation
- Articles Applied
- Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires
- Creep properties at 125 °C of an AM50 Mg alloy modified by Si additions
- Dependence of mechanical strength on grain structure in the γ′ and oxide dispersions-trengthened nickelbase superalloy PM 3030
- On the improvement of the ductility of molybdenum by spinel (MgAl2O4) particles
- Hot workability and extrusion modelling of magnesium alloys
- Characterization of hot-deformation behaviour of Zircaloy-2: a comparison between kinetic analysis and processing maps
- Requirements for microstructural investigations of steels used in modern power plants
- Influence of Lüders band formation on the cyclic creep behaviour of a low-carbon steel for piping applications
- Creep and creep rupture behaviour of 650 °C ferritic/martensitic super heat resistant steels
- Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites
- Notifications/Mitteilungen
- Personal/Personelles
- News/Aktuelles
- Conferences/Konferenzen