Startseite Tertiary creep of metals and alloys
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Tertiary creep of metals and alloys

  • B. Wilshire EMAIL logo und H. Burt
Veröffentlicht/Copyright: 28. Januar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The variations in strain rate with increasing strain are documented for tensile creep curves obtained under constant-stress test conditions for a range of pure metals and commercial creep-resistant alloys. These curve shape analyses are discussed in relation to information derived from microstructural studies and determinations of creep damage tolerance values, allowing identification of the damage processes governing tertiary creep and fracture.


Professor Brian Wilshire Materials Research Centre, School of Engineering University of Wales Swansea Singleton Park, Swansea, SA2 8PP, UK Tel.: +44 1792 295 243 Fax: +44 1792 295 244

Dedicated to Professor Wolfgang Blum on the occasion of his 65th birthday


References

[1] E.N. da C. Andrade:Proc. Roy. Soc. A84 (1910) 1.Suche in Google Scholar

[2] A.H. Cottrell, V. Aytekin:Nature160 (1947) 328.10.1038/160328a0Suche in Google Scholar

[3] F. Garofalo:Fundamentals of Creep and Creep Rupture in Metals,MacMillan, New York (1965).Suche in Google Scholar

[4] J.B. Conway:Numerical Methods for Creep and Rupture Analyses, Gordon and Breach, New York (1967).Suche in Google Scholar

[5] A. Graham, K.F.A. Walles:J. Iron Steel Inst. 179 (1955) 105.Suche in Google Scholar

[6] J. de Lacombe:Rev. Met. 36 (1939) 178.10.1051/metal/193936040178Suche in Google Scholar

[7] R.W. Evans, B. Wilshire:Creep of Metals and Alloys, Institute of Metals, London (1985).Suche in Google Scholar

[8] H. Wolf, W. Blum, in:B. Wilshire, R.W. Evans (Eds.). Proc. Third. Inter. Conf. on Creep and Fracture of Engineering Materials and Structures.Institute of Metals, London (1987) 649.Suche in Google Scholar

[9] W. Blum, F. Breutinger, in:J.D. Parker (Ed.), Proc. Ninth Intern. Conf. on Creep and Fracture of Engineering Materials and Structures.Institute of Materials, London (2001) 39.Suche in Google Scholar

[10] F.C. Monkman, N.J. Grant:Proc. ASTM. 56 (1956) 593.Suche in Google Scholar

[11] F.A. Leckie, D.R. Hayhurst:Acta Metall. 25 (1977) 1059.10.1016/0001-6160(77)90135-3Suche in Google Scholar

[12] M.F. Ashby, B.F. Dyson, in:S.R. Valluri (Ed.). Advances in Fracture Research, Pergamon Press, Oxford1 (1984) 3.Suche in Google Scholar

[13] B. Wilshire, A. Battenbough:To be published.Suche in Google Scholar

[14] B. Wilshire, T.D. Lieu:Mater. Sci. Eng.A386 (2004) 81.10.1016/S0921-5093(04)00969-4Suche in Google Scholar

[15] H. Burt, B. Wilshire:Metall. Mater. Trans. A35 (2004) 1691.10.1007/s11661-004-0078-8Suche in Google Scholar

[16] B. Wilshire, H. Burt:Mater. Sci. Forum396 (2002) 1309.10.4028/www.scientific.net/MSF.396-402.1309Suche in Google Scholar

[17] M.E. Kassner, T.A. Hayes:Inter. J. Plasticity19 (2003) 1715.10.1016/S0749-6419(02)00111-0Suche in Google Scholar

[18] R.W. Evans, B. Wilshire:Introduction to Creep, Institute of Materials, London (1993).Suche in Google Scholar

[19] L.M. Kachanov:Izv. Acad. Nauk. USSR, Otd. TeKd.Nauk.8 (1958) 26.Suche in Google Scholar

Received: 2004-12-17
Accepted: 2005-03-15
Published Online: 2022-01-28

© 2005 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles Basic
  5. Identifying creep mechanisms in plastic flow
  6. A unified microstructural metal plasticity model applied in testing, processing, and forming of aluminium alloys
  7. Implications of non-negligible microstructural variations during steady-state deformation
  8. Tertiary creep of metals and alloys
  9. Interactions between particles and low-angle dislocation boundaries during high-temperature deformation
  10. Strain-rate sensitivity of ultrafine-grained materials
  11. Transient plastic flow at nominally fixed structure due to load redistribution
  12. Vacancy concentrations determined from the diffuse background scattering of X-rays in plastically deformed copper
  13. Effect of heating rate in α + γ dual-phase field on lamellar microstructure and creep resistance of a TiAl alloy
  14. About stress reduction experiments during constant strain-rate deformation tests
  15. Finite-element modelling of anisotropic single-crystal superalloy creep deformation based on dislocation densities of individual slip systems
  16. Variational approach to subgrain formation
  17. Articles Applied
  18. Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires
  19. Creep properties at 125 °C of an AM50 Mg alloy modified by Si additions
  20. Dependence of mechanical strength on grain structure in the γ′ and oxide dispersions-trengthened nickelbase superalloy PM 3030
  21. On the improvement of the ductility of molybdenum by spinel (MgAl2O4) particles
  22. Hot workability and extrusion modelling of magnesium alloys
  23. Characterization of hot-deformation behaviour of Zircaloy-2: a comparison between kinetic analysis and processing maps
  24. Requirements for microstructural investigations of steels used in modern power plants
  25. Influence of Lüders band formation on the cyclic creep behaviour of a low-carbon steel for piping applications
  26. Creep and creep rupture behaviour of 650 °C ferritic/martensitic super heat resistant steels
  27. Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites
  28. Notifications/Mitteilungen
  29. Personal/Personelles
  30. News/Aktuelles
  31. Conferences/Konferenzen
Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2005-0099/html
Button zum nach oben scrollen