Abstract
The creep behaviour of an AM50 alloy modified by the addition of different proportions of Si was investigated at 125 °C. Increases from 0.3 to 1.5 wt.% Si led to a significant reduction in secondary creep rate. The time to rupture under 100 MPa increased with Si content and peaked with Si = 0.5 – 0.8 wt.%; further increases in Si content did not induce significant variations in creep strength, since the reduction in creep rate was offset by a parallel reduction in ductility. Microstructural investigations led to the identification of the major strengthening phases: β-Mg17Al12 and Mg2Si. Results are discussed and analysed in the light of the more recent data on the creep response of other Mg– Al alloys.
References
[1] M. Regev, E. Aghion, A. Rosen: Mater. Sci. Eng. A 234 (1997) 123.10.1016/S0921-5093(97)00215-3Search in Google Scholar
[2] A. Finkel, M. Regev, E. Aghion, M. Bamberger, A. Rosen, in: E. Aghion, D. Eliezer (Eds.), Proc. First Israeli Int. Conference of Magnesium Sci. and Techn. (1997) 121.Search in Google Scholar
[3] M. Regev, M. Bamberger, A. Rosen,in: B.L. Mordike, F. Hermann (Eds.), Magnesium Alloys and Their Applications, DGM Informationsgesellschaft, Frankfurt (1998) 283.Search in Google Scholar
[4] M. Regev, E. Aghion, A. Rosen, M. Bamberger: Mater. Sci. Eng. A 252 (1998) 6.10.1016/S0921-5093(98)00668-6Search in Google Scholar
[5] S. Spigarelli, M. Cabibbo, E. Evangelista, M. Talianker, V. Ezersky: Mater. Sci. Eng. A 289 (2000) 172.10.1016/S0921-5093(00)00911-4Search in Google Scholar
[6] M. Regev, O. Botstein, M. Bamberger, A. Rosen: Mater. Sci. Eng. A 302 (2001) 51.10.1016/S0921-5093(00)01353-8Search in Google Scholar
[7] W. Blum, P. Zhang, B. Watzinger, B.V. Grossmann, H.G. Haldenwanger: Mater. Sci. Eng. A 319 (2001) 735.10.1016/S0921-5093(00)02016-5Search in Google Scholar
[8] S. Spigarelli, M. Regev, E. Evangelista, A. Rosen: Mater. Sci. Tech. 17 (2001) 627.10.1179/026708301101510483Search in Google Scholar
[9] W. Qudong, C. Wenzhou, Z. Xiaoquin, L. Yizhen, D. Wenjiang, Z. Yanping, X. Xiaoping: J. Mater. Sci. 36 (2001) 3035.10.1023/A:1017927109291Search in Google Scholar
[10] Y. Guangyin, W. Qudong, D. Wenjiang: J. Mater. Sci. 37 (2002) 127.10.1023/A:1013114412378Search in Google Scholar
[11] Y. Guangyin, S. Yangshan, D. Wenjiang: Mater. Sci. Eng. A 308 (2001) 38.10.1016/S0921-5093(00)02043-8Search in Google Scholar
[12] V. Sklenička, M. Pahutová, K. Kuchařová, M. Svoboda, T.G. Langdon: Key Eng. Mater.171 (2000) 593. Search in Google Scholar
[13] Y. Li, T.G. Langdon: Metall. Mater. Trans. A 30 (1999) 2059. 10.1007/s11661-999-0016-xSearch in Google Scholar
[14] V. Sklenička, M. Svoboda, M. Pahutová, K. Kucharová, T.G. Langdon: Mater. Sci. Eng. A 319 (2001) 741. 10.1016/S0921-5093(01)01023-1Search in Google Scholar
[15] M. Svoboda, M. Pahutová, K. Kuchařová, V. Sklenicka, T.G.Langdon: Mater. Sci. Eng. A 234 (2002) 151. 10.1016/S0921-5093(01)01298-9Search in Google Scholar
[16] M. Pahutová, J. Březina, K. Kuchařová, V. Sklenička, T.G. Langdon: Mater. Letters 39 (1999) 179. 10.1016/S0167-577X(99)00002-6Search in Google Scholar
[17] Y. Terada, N. Ishimatsu, R. Sota, T. Sato, K. Ohori: Mater. Sci.Forum 419 (2003) 459. 10.4028/www.scientific.net/MSF.419-422.459Search in Google Scholar
[18] B. Brofin, M. Katsir, E. Aghion: Mater. Sci. Eng. A 302 (2001) 46. 10.1016/S0921-5093(00)01352-6Search in Google Scholar
[19] A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, D.H. StJohn: J.of Light Metals 1 (2001) 61. 10.1016/S1471-5317(00)00007-9Search in Google Scholar
[20] R.M. Wang, A. Eliezer, E.M. Gutman: Mater. Sci. Eng. A 355 (2003) 201.10.1016/S0921-5093(03)00065-0Search in Google Scholar
[21] M.T. Perez-Prado, J.A. del Valle, J.M. Contreras, O.A. Ruano: Scripta Mater. 50 (2004) 661.10.1016/j.scriptamat.2003.11.014Search in Google Scholar
[22] M.S. Dargusch, K. Pettersen, G.L. Dunlop: Proc. of NADCA Conf. (1997) 131.Search in Google Scholar
[23] L.-Y. Wei, K. Wei, K. Pettersen, H. Westengen, R. Warren, in: Magnesium Alloys and their Applications, Proc. Conf. “Materials Week 2000” (2001).Search in Google Scholar
[24] H. Mughrabi,in: P. Haasen, V. Gerold, G. Kostorz (Eds.), Strength of Metals and Alloys, Pergamon, Oxford (1980) 1615.10.1016/B978-1-4832-8412-5.50248-4Search in Google Scholar
[25] S. Vogler, W. Blum, in: B. Wilshire, R.W. Evans (Eds.), Creep and Fracture of Engineering Materials and Structures, The Institute of Metals, London (1990) 65.Search in Google Scholar
[26] P. Yavari, T.G. Langdon: Acta Metall. 30 (1982) 2196.Search in Google Scholar
[27] S.S. Vagarali, T.G. Langdon: Acta Metall. 30 (1982) 1157.10.1016/0001-6160(82)90009-8Search in Google Scholar
[28] H. Sato, H. Oikawa, in: D.G. Brandon, R. Chaim, A. Rosen (Eds.), Strength of Metals and Alloys, Freund Publishing House, London (1991) 463.Search in Google Scholar
[29] H. Sato, Y. Masada, H. Oikawa, in: Y. Hosoi, H. Yoshinaga, H. Oikawa, K. Maruyama (Eds.), Aspects of High Temperature Deformation and Fracture in Crystalline Materials, The Japan Institute of Metals (1993) 107.Search in Google Scholar
[30] J.F. Nie: Scripta Mater. 48 (2003) 1009.10.1016/S1359-6462(02)00497-9Search in Google Scholar
[31] M. Soo Yoo, K.S. Shin, N.J. Kim: Metall. Mater. Trans. A 35 (2004) 1629.10.1007/s11661-004-0268-4Search in Google Scholar
[32] W. Blum, P. Weidinger, B. Watzinger, R. Sedlácek, R. Rösch, H.-G. Haldenwanger: Z. Metallkd. 88 (1997) 637.Search in Google Scholar
[33] K. Milička, F. Dobeš: J. of Alloys and Compounds 378 (2004) 167.10.1016/j.jallcom.2003.11.171Search in Google Scholar
[34] E. Gariboldi, M. Vedani, E. Evangelista, S. Spigarelli, O. Lohne, K. Pettersen, in: T. Lewis (Ed.), Light Metals 2002, The Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, Quebec (2002) 765.Search in Google Scholar
[35] M. Cabibbo, S. Spigarelli, E. Evangelista: unpublished results.Search in Google Scholar
© 2005 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Identifying creep mechanisms in plastic flow
- A unified microstructural metal plasticity model applied in testing, processing, and forming of aluminium alloys
- Implications of non-negligible microstructural variations during steady-state deformation
- Tertiary creep of metals and alloys
- Interactions between particles and low-angle dislocation boundaries during high-temperature deformation
- Strain-rate sensitivity of ultrafine-grained materials
- Transient plastic flow at nominally fixed structure due to load redistribution
- Vacancy concentrations determined from the diffuse background scattering of X-rays in plastically deformed copper
- Effect of heating rate in α + γ dual-phase field on lamellar microstructure and creep resistance of a TiAl alloy
- About stress reduction experiments during constant strain-rate deformation tests
- Finite-element modelling of anisotropic single-crystal superalloy creep deformation based on dislocation densities of individual slip systems
- Variational approach to subgrain formation
- Articles Applied
- Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires
- Creep properties at 125 °C of an AM50 Mg alloy modified by Si additions
- Dependence of mechanical strength on grain structure in the γ′ and oxide dispersions-trengthened nickelbase superalloy PM 3030
- On the improvement of the ductility of molybdenum by spinel (MgAl2O4) particles
- Hot workability and extrusion modelling of magnesium alloys
- Characterization of hot-deformation behaviour of Zircaloy-2: a comparison between kinetic analysis and processing maps
- Requirements for microstructural investigations of steels used in modern power plants
- Influence of Lüders band formation on the cyclic creep behaviour of a low-carbon steel for piping applications
- Creep and creep rupture behaviour of 650 °C ferritic/martensitic super heat resistant steels
- Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites
- Notifications/Mitteilungen
- Personal/Personelles
- News/Aktuelles
- Conferences/Konferenzen
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Identifying creep mechanisms in plastic flow
- A unified microstructural metal plasticity model applied in testing, processing, and forming of aluminium alloys
- Implications of non-negligible microstructural variations during steady-state deformation
- Tertiary creep of metals and alloys
- Interactions between particles and low-angle dislocation boundaries during high-temperature deformation
- Strain-rate sensitivity of ultrafine-grained materials
- Transient plastic flow at nominally fixed structure due to load redistribution
- Vacancy concentrations determined from the diffuse background scattering of X-rays in plastically deformed copper
- Effect of heating rate in α + γ dual-phase field on lamellar microstructure and creep resistance of a TiAl alloy
- About stress reduction experiments during constant strain-rate deformation tests
- Finite-element modelling of anisotropic single-crystal superalloy creep deformation based on dislocation densities of individual slip systems
- Variational approach to subgrain formation
- Articles Applied
- Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires
- Creep properties at 125 °C of an AM50 Mg alloy modified by Si additions
- Dependence of mechanical strength on grain structure in the γ′ and oxide dispersions-trengthened nickelbase superalloy PM 3030
- On the improvement of the ductility of molybdenum by spinel (MgAl2O4) particles
- Hot workability and extrusion modelling of magnesium alloys
- Characterization of hot-deformation behaviour of Zircaloy-2: a comparison between kinetic analysis and processing maps
- Requirements for microstructural investigations of steels used in modern power plants
- Influence of Lüders band formation on the cyclic creep behaviour of a low-carbon steel for piping applications
- Creep and creep rupture behaviour of 650 °C ferritic/martensitic super heat resistant steels
- Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites
- Notifications/Mitteilungen
- Personal/Personelles
- News/Aktuelles
- Conferences/Konferenzen