Home Technology Creep properties at 125 °C of an AM50 Mg alloy modified by Si additions
Article
Licensed
Unlicensed Requires Authentication

Creep properties at 125 °C of an AM50 Mg alloy modified by Si additions

  • S. Spigarelli EMAIL logo , E. Evangelista , M. Cabibbo , O. Lohne and P. Ulseth
Published/Copyright: January 28, 2022

Abstract

The creep behaviour of an AM50 alloy modified by the addition of different proportions of Si was investigated at 125 °C. Increases from 0.3 to 1.5 wt.% Si led to a significant reduction in secondary creep rate. The time to rupture under 100 MPa increased with Si content and peaked with Si = 0.5 – 0.8 wt.%; further increases in Si content did not induce significant variations in creep strength, since the reduction in creep rate was offset by a parallel reduction in ductility. Microstructural investigations led to the identification of the major strengthening phases: β-Mg17Al12 and Mg2Si. Results are discussed and analysed in the light of the more recent data on the creep response of other Mg– Al alloys.


Dr. Stefano Spigarelli Dipartimento di Meccanica, Universitá Politecnica delle Marche Via Brecce Bianche I-60131 Ancona, Italy Tel.: +39 71 220 4746 Fax: +39 71 220 4799

Dedicated to Professor Wolfgang Blum on the occasion of his 65th birthday


References

[1] M. Regev, E. Aghion, A. Rosen: Mater. Sci. Eng. A 234 (1997) 123.10.1016/S0921-5093(97)00215-3Search in Google Scholar

[2] A. Finkel, M. Regev, E. Aghion, M. Bamberger, A. Rosen, in: E. Aghion, D. Eliezer (Eds.), Proc. First Israeli Int. Conference of Magnesium Sci. and Techn. (1997) 121.Search in Google Scholar

[3] M. Regev, M. Bamberger, A. Rosen,in: B.L. Mordike, F. Hermann (Eds.), Magnesium Alloys and Their Applications, DGM Informationsgesellschaft, Frankfurt (1998) 283.Search in Google Scholar

[4] M. Regev, E. Aghion, A. Rosen, M. Bamberger: Mater. Sci. Eng. A 252 (1998) 6.10.1016/S0921-5093(98)00668-6Search in Google Scholar

[5] S. Spigarelli, M. Cabibbo, E. Evangelista, M. Talianker, V. Ezersky: Mater. Sci. Eng. A 289 (2000) 172.10.1016/S0921-5093(00)00911-4Search in Google Scholar

[6] M. Regev, O. Botstein, M. Bamberger, A. Rosen: Mater. Sci. Eng. A 302 (2001) 51.10.1016/S0921-5093(00)01353-8Search in Google Scholar

[7] W. Blum, P. Zhang, B. Watzinger, B.V. Grossmann, H.G. Haldenwanger: Mater. Sci. Eng. A 319 (2001) 735.10.1016/S0921-5093(00)02016-5Search in Google Scholar

[8] S. Spigarelli, M. Regev, E. Evangelista, A. Rosen: Mater. Sci. Tech. 17 (2001) 627.10.1179/026708301101510483Search in Google Scholar

[9] W. Qudong, C. Wenzhou, Z. Xiaoquin, L. Yizhen, D. Wenjiang, Z. Yanping, X. Xiaoping: J. Mater. Sci. 36 (2001) 3035.10.1023/A:1017927109291Search in Google Scholar

[10] Y. Guangyin, W. Qudong, D. Wenjiang: J. Mater. Sci. 37 (2002) 127.10.1023/A:1013114412378Search in Google Scholar

[11] Y. Guangyin, S. Yangshan, D. Wenjiang: Mater. Sci. Eng. A 308 (2001) 38.10.1016/S0921-5093(00)02043-8Search in Google Scholar

[12] V. Sklenička, M. Pahutová, K. Kuchařová, M. Svoboda, T.G. Langdon: Key Eng. Mater.171 (2000) 593. Search in Google Scholar

[13] Y. Li, T.G. Langdon: Metall. Mater. Trans. A 30 (1999) 2059. 10.1007/s11661-999-0016-xSearch in Google Scholar

[14] V. Sklenička, M. Svoboda, M. Pahutová, K. Kucharová, T.G. Langdon: Mater. Sci. Eng. A 319 (2001) 741. 10.1016/S0921-5093(01)01023-1Search in Google Scholar

[15] M. Svoboda, M. Pahutová, K. Kuchařová, V. Sklenicka, T.G.Langdon: Mater. Sci. Eng. A 234 (2002) 151. 10.1016/S0921-5093(01)01298-9Search in Google Scholar

[16] M. Pahutová, J. Březina, K. Kuchařová, V. Sklenička, T.G. Langdon: Mater. Letters 39 (1999) 179. 10.1016/S0167-577X(99)00002-6Search in Google Scholar

[17] Y. Terada, N. Ishimatsu, R. Sota, T. Sato, K. Ohori: Mater. Sci.Forum 419 (2003) 459. 10.4028/www.scientific.net/MSF.419-422.459Search in Google Scholar

[18] B. Brofin, M. Katsir, E. Aghion: Mater. Sci. Eng. A 302 (2001) 46. 10.1016/S0921-5093(00)01352-6Search in Google Scholar

[19] A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, D.H. StJohn: J.of Light Metals 1 (2001) 61. 10.1016/S1471-5317(00)00007-9Search in Google Scholar

[20] R.M. Wang, A. Eliezer, E.M. Gutman: Mater. Sci. Eng. A 355 (2003) 201.10.1016/S0921-5093(03)00065-0Search in Google Scholar

[21] M.T. Perez-Prado, J.A. del Valle, J.M. Contreras, O.A. Ruano: Scripta Mater. 50 (2004) 661.10.1016/j.scriptamat.2003.11.014Search in Google Scholar

[22] M.S. Dargusch, K. Pettersen, G.L. Dunlop: Proc. of NADCA Conf. (1997) 131.Search in Google Scholar

[23] L.-Y. Wei, K. Wei, K. Pettersen, H. Westengen, R. Warren, in: Magnesium Alloys and their Applications, Proc. Conf. “Materials Week 2000” (2001).Search in Google Scholar

[24] H. Mughrabi,in: P. Haasen, V. Gerold, G. Kostorz (Eds.), Strength of Metals and Alloys, Pergamon, Oxford (1980) 1615.10.1016/B978-1-4832-8412-5.50248-4Search in Google Scholar

[25] S. Vogler, W. Blum, in: B. Wilshire, R.W. Evans (Eds.), Creep and Fracture of Engineering Materials and Structures, The Institute of Metals, London (1990) 65.Search in Google Scholar

[26] P. Yavari, T.G. Langdon: Acta Metall. 30 (1982) 2196.Search in Google Scholar

[27] S.S. Vagarali, T.G. Langdon: Acta Metall. 30 (1982) 1157.10.1016/0001-6160(82)90009-8Search in Google Scholar

[28] H. Sato, H. Oikawa, in: D.G. Brandon, R. Chaim, A. Rosen (Eds.), Strength of Metals and Alloys, Freund Publishing House, London (1991) 463.Search in Google Scholar

[29] H. Sato, Y. Masada, H. Oikawa, in: Y. Hosoi, H. Yoshinaga, H. Oikawa, K. Maruyama (Eds.), Aspects of High Temperature Deformation and Fracture in Crystalline Materials, The Japan Institute of Metals (1993) 107.Search in Google Scholar

[30] J.F. Nie: Scripta Mater. 48 (2003) 1009.10.1016/S1359-6462(02)00497-9Search in Google Scholar

[31] M. Soo Yoo, K.S. Shin, N.J. Kim: Metall. Mater. Trans. A 35 (2004) 1629.10.1007/s11661-004-0268-4Search in Google Scholar

[32] W. Blum, P. Weidinger, B. Watzinger, R. Sedlácek, R. Rösch, H.-G. Haldenwanger: Z. Metallkd. 88 (1997) 637.Search in Google Scholar

[33] K. Milička, F. Dobeš: J. of Alloys and Compounds 378 (2004) 167.10.1016/j.jallcom.2003.11.171Search in Google Scholar

[34] E. Gariboldi, M. Vedani, E. Evangelista, S. Spigarelli, O. Lohne, K. Pettersen, in: T. Lewis (Ed.), Light Metals 2002, The Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, Quebec (2002) 765.Search in Google Scholar

[35] M. Cabibbo, S. Spigarelli, E. Evangelista: unpublished results.Search in Google Scholar

Received: 2004-12-13
Accepted: 2005-03-10
Published Online: 2022-01-28

© 2005 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles Basic
  5. Identifying creep mechanisms in plastic flow
  6. A unified microstructural metal plasticity model applied in testing, processing, and forming of aluminium alloys
  7. Implications of non-negligible microstructural variations during steady-state deformation
  8. Tertiary creep of metals and alloys
  9. Interactions between particles and low-angle dislocation boundaries during high-temperature deformation
  10. Strain-rate sensitivity of ultrafine-grained materials
  11. Transient plastic flow at nominally fixed structure due to load redistribution
  12. Vacancy concentrations determined from the diffuse background scattering of X-rays in plastically deformed copper
  13. Effect of heating rate in α + γ dual-phase field on lamellar microstructure and creep resistance of a TiAl alloy
  14. About stress reduction experiments during constant strain-rate deformation tests
  15. Finite-element modelling of anisotropic single-crystal superalloy creep deformation based on dislocation densities of individual slip systems
  16. Variational approach to subgrain formation
  17. Articles Applied
  18. Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires
  19. Creep properties at 125 °C of an AM50 Mg alloy modified by Si additions
  20. Dependence of mechanical strength on grain structure in the γ′ and oxide dispersions-trengthened nickelbase superalloy PM 3030
  21. On the improvement of the ductility of molybdenum by spinel (MgAl2O4) particles
  22. Hot workability and extrusion modelling of magnesium alloys
  23. Characterization of hot-deformation behaviour of Zircaloy-2: a comparison between kinetic analysis and processing maps
  24. Requirements for microstructural investigations of steels used in modern power plants
  25. Influence of Lüders band formation on the cyclic creep behaviour of a low-carbon steel for piping applications
  26. Creep and creep rupture behaviour of 650 °C ferritic/martensitic super heat resistant steels
  27. Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites
  28. Notifications/Mitteilungen
  29. Personal/Personelles
  30. News/Aktuelles
  31. Conferences/Konferenzen
Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2005-0109/html
Scroll to top button