Startseite Technik Identifying creep mechanisms in plastic flow
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Identifying creep mechanisms in plastic flow

  • Terence G. Langdon EMAIL logo
Veröffentlicht/Copyright: 28. Januar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The mechanisms occurring in plastic flow at elevated temperatures may be divided into three distinct classes depending upon whether they are intragranular dislocation mechanisms, grain boundary sliding including superplasticity or diffusion creep occurring through vacancy flow. The characteristics of these various mechanisms are described and procedures are outlined for distinguishing between the different processes. Using this approach, it is shown that there is good experimental data supporting the occurrence of both Harper –Dorn creep and Nabarro – Herring diffusion creep as distinct creep processes. Recent results reported from computer simulations, combined with experimental observations, suggest the possible occurrence of grain boundary sliding at low temperatures in nanostructured and ultrafine-grained materials.


T. G. Langdon Department of Aerospace & Mechanical Engineering and Materials Science, University of Southern California CA 90089-1453 Los Angeles, USA Tel.: +1 213 740 0491 Fax: +1 213 740 8071

Dedicated to Professor Wolfgang Blum on the occasion of his 65th birthday


  1. This work was supported by the National Science Foundation of the United States under Grant No. DMR-0243331.

References

[1] P. Phillips: Proc. Roy. Soc. London 19 (1903 –1905) 491.10.1088/1478-7814/19/1/342Suche in Google Scholar

[2] J.E. Bird, AK. Mukherjee, J.E. Dorn, in: D.G. Brandon, A. Rosen (Eds.), Quantitative Relation between Properties and Microstructure, Israel Universities Press, Jerusalem, Israel (1969) 255.Suche in Google Scholar

[3] J. Weertman: J. Appl. Phys. 28 (1957) 362.10.1063/1.1722747Suche in Google Scholar

[4] J. Weertman: J. Appl. Phys. 28 (1957) 118510.1063/1.1722604Suche in Google Scholar

[5] J. Harper, J.E. Dorn: Acta Metall. 5 (1957) 654.10.1016/0001-6160(57)90112-8Suche in Google Scholar

[6] T.G. Langdon: Acta Metall. Mater. 42 (1994) 2437.10.1016/0956-7151(94)90322-0Suche in Google Scholar

[7] F.R.N. Nabarro, in: Report of a Conference on Strength of Solids, The Physical Society, London, U.K. (1948) 75.Suche in Google Scholar

[8] C. Herring: J. Appl. Phys. 21 (1950) 437.10.1063/1.1699681Suche in Google Scholar

[9] R.L. Coble: J. Appl. Phys. 34 (1963) 1679.10.1063/1.1702656Suche in Google Scholar

[10] J. Weertman: Trans. AIME 218 (1960) 207.Suche in Google Scholar

[11] J. Weertman: Trans. ASM 61 (1968) 681.Suche in Google Scholar

[12] F.A. Mohamed, T.G. Langdon: Acta Metall. 22 (1974) 779.10.1016/0001-6160(74)90088-1Suche in Google Scholar

[13] P. Yavari, T.G. Langdon: Acta Metall. 30 (1982) 2181.10.1016/0001-6160(82)90139-0Suche in Google Scholar

[14] T.G. Langdon, P. Yavari: Acta Metall. 30 (1982) 881.10.1016/0001-6160(82)90086-4Suche in Google Scholar

[15] M.Y. Wu, O.D. Sherby: Acta Metall. (1984) 1561.Suche in Google Scholar

[16] A.J. Ardell, S.S. Lee: Acta Metall. 34 (1986) 2411.10.1016/0001-6160(86)90144-6Suche in Google Scholar

[17] F.R.N. Nabarro: Acta Metall. 37 (1989) 2217.10.1016/0001-6160(89)90147-8Suche in Google Scholar

[18] J.N. Wang, T.G. Langdon: Acta Metall. Mater. 42 (1994) 2487.10.1016/0956-7151(94)90328-XSuche in Google Scholar

[19] A.J. Ardell: Acta Mater. 45 (1997) 2971.10.1016/S1359-6454(96)00397-7Suche in Google Scholar

[20] O.A. Ruano, J. Wadsworth, J. Wolfenstine, O.D. Sherby: Mater. Sci. Eng. A 165 (1993) 133.10.1016/0921-5093(93)90747-3Suche in Google Scholar

[21] F.R.N. Nabarro: Phys. Stat. Sol. (a) 182 (2000) 627.10.1002/1521-396X(200012)182:2<627::AID-PSSA627>3.0.CO;2-ESuche in Google Scholar

[22] W. Blum, W. Maier: Phys. Stat. Sol. (a) 171 (1999) 467.10.1002/(SICI)1521-396X(199902)171:2<467::AID-PSSA467>3.0.CO;2-8Suche in Google Scholar

[23] E. Nes, W. Blum, P. Eisenlohr: Metall. Mater. Trans. A 33 (2002) 305.10.1007/s11661-002-0091-8Suche in Google Scholar

[24] T.G. Langdon: Mater. Sci. Eng. A 166 (1993) 67.10.1016/0921-5093(93)90311-2Suche in Google Scholar

[25] F.A. Mohamed, T.G. Langdon: Scripta Metall. 10 (1976) 759.10.1016/0036-9748(76)90358-6Suche in Google Scholar

[26] P.K. Chaudhury, F.A. Mohamed: Acta Metall. 36 (1988) 1099.10.1016/0001-6160(88)90163-0Suche in Google Scholar

[27] P.K. Chaudhury, V. Sivaramakrishnan, F.A. Mohamed: Metall. Trans. A 19 (1988) 2741.10.1007/BF02645809Suche in Google Scholar

[28] W.R. Cannon, T.G. Langdon: J. Mater. Sci. 23 (1988) 1.10.1007/BF01174028Suche in Google Scholar

[29] T.G. Langdon: Mater. Sci. Eng. A 137 (1991) 1.10.1016/0921-5093(91)90312-BSuche in Google Scholar

[30] A.H. Chokshi, A.K. Mukherjee, T.G. Langdon: Mater. Sci. Eng. R 10 (1993) 237.10.1016/0927-796X(93)90009-RSuche in Google Scholar

[31] T.G. Langdon: Mater. Sci. Eng. A 174 (1994) 225.10.1016/0921-5093(94)91092-8Suche in Google Scholar

[32] L.K.L. Falk, P.R. Howell, G.L. Dunlop, T.G. Langdon: Acta Metall. 34 (1986) 1203.10.1016/0001-6160(86)90007-6Suche in Google Scholar

[33] R. Z. Valiev, T.G. Langdon: Acta Metall. Mater. 41 (1993) 949.10.1016/0956-7151(93)90029-RSuche in Google Scholar

[34] W.A. Rachinger: J. Inst. Metals 81 (1952 –1953) 33.Suche in Google Scholar

[35] I.M. Lifshitz: Soviet Phys. JETP 17 (1963) 909.Suche in Google Scholar

[36] T.G. Langdon: Scripta Mater. 35 (1996) 733.10.1016/1359-6462(96)00219-9Suche in Google Scholar

[37] T.G. Langdon: Mater. Sci. Eng. A 283 (2000) 266.10.1016/S0921-5093(00)00624-9Suche in Google Scholar

[38] F.A. Mohamed, J. Wolfenstine, in: T.G. Langdon, H.D. Merchant, J.G. Morris, M.A. Zaidi (Eds.), Hot Deformation of Aluminum Alloys, The Minerals, Metals and Materials Society, Warrendale, PA (1991) 223.Suche in Google Scholar

[39] V. Raman, S.V. Raj: Scripta Metall. 19 (1985) 629.10.1016/0036-9748(85)90350-3Suche in Google Scholar

[40] S.V. Raj: Scripta Metall. 19 (1985) 1969.10.1016/0036-9748(85)90011-0Suche in Google Scholar

[41] F.A. Mohamed, T.J. Ginter: Acta Metall. 30 (1982) 1881.10.1016/0001-6160(82)90027-XSuche in Google Scholar

[42] T.J. Ginter, P.K. Chaudhury, F.A. Mohamed: Acta Mater. 49 (2001) 263.10.1016/S1359-6454(00)00316-5Suche in Google Scholar

[43] T.J. Ginter, F.A. Mohamed: Mater. Sci. Eng. A 322 (2002) 148.10.1016/S0921-5093(01)01127-3Suche in Google Scholar

[44] J.G. Harper, L.A. Shepard, J.E. Dorn: Acta Metall. 6 (1958) 509.10.1016/0001-6160(58)90114-7Suche in Google Scholar

[45] J. Wadsworth, O.A. Ruano, O.D. Sherby, in: R.S. Mishra, A.K. Mukherjee, K.L. Murty (Eds.), Creep Behavior of Advanced Materials for the 21st Century, The Minerals, Metals and Materials Society, Warrendale, PA (1999) 425.Suche in Google Scholar

[46] R.C. Gifkins, T.G. Langdon: Scripta Metall. 4 (1970) 563.10.1016/0036-9748(70)90148-1Suche in Google Scholar

[47] J.E. Harris: Metal Sci. J. 7 (1973) 1.10.1179/030634573790445514Suche in Google Scholar

[48] P. Greenfield, C.C. Smith, A.M. Taylor: Trans. AIME 221 (1961) 1065.Suche in Google Scholar

[49] B.W. Pickles: J. Inst. Metals 95 (1967) 333.Suche in Google Scholar

[50] I.G. Crossland, J.C. Wood: Phil. Mag. 31 (1975) 1415.10.1080/00318087508228692Suche in Google Scholar

[51] E.H. Aigeltinger, R.C. Gifkins: J. Mater. Sci. 10 (1975) 1889.10.1007/BF00754479Suche in Google Scholar

[52] R.C. Gifkins, T.G. Langdon, D. McLean: Metal Sci. 9 (1975) 141.10.1179/030634575790444522Suche in Google Scholar

[53] B.-N. Kim, K. Hiraga: Scripta Mater. 42 (2000) 451.10.1016/S1359-6462(99)00369-3Suche in Google Scholar

[54] S.S. Sahay, G.S. Murty: J. Nucl. Mater. 195 (1992) 320.10.1016/0022-3115(92)90524-OSuche in Google Scholar

[55] S.S. Sahay, G.S. Murty: Scripta Mater. 44 (2001) 841.10.1016/S1359-6462(00)00655-2Suche in Google Scholar

[56] G.W. Greenwood: Scripta Metall. Mater. 30 (1994) 1527.10.1016/0956-716X(94)90302-6Suche in Google Scholar

[57] B. Burton, G.L. Reynolds: Mater. Sci. Eng. A 191 (1995) 135.10.1016/0921-5093(94)09643-0Suche in Google Scholar

[58] L. Kloc: Scripta Mater. 35 (1996) 539.10.1016/1359-6462(96)00176-5Suche in Google Scholar

[59] G.W. Greenwood, in: R.S. Mishra, A.K. Mukherjee, K.L. Murty (Eds.), Creep Behavior of Advanced Materials for the 21st Century, The Minerals, Metals and Materials Society, Warrendale, PA (1999) 413.Suche in Google Scholar

[60] K.R. McNee, G.W. Greenwood, H. Jones: Scripta Mater. 46 (2002) 437.10.1016/S1359-6462(02)00009-XSuche in Google Scholar

[61] J. Wolfenstine, O.A. Ruano, J. Wadsworth, O.D. Sherby: Scripta Metall. Mater. 29 (1993) 515.10.1016/0956-716X(93)90157-NSuche in Google Scholar

[62] O.A. Ruano, O.D. Sherby, J. Wadsworth, J. Wolfenstine: Scripta Mater. 38 (1998) 1307.10.1016/S1359-6462(98)00021-9Suche in Google Scholar

[63] J. Wadsworth, O.A. Ruano, O.D. Sherby: Metall. Mater. Trans. A 33 (2002) 219.10.1007/s11661-002-0084-7Suche in Google Scholar

[64] W. Vickers, P. Greenfield: J. Nucl. Mater. 24 (1967) 249.10.1016/0022-3115(67)90198-5Suche in Google Scholar

[65] J.B. Bilde-Sørensen, D.A. Smith: Scripta Metall. Mater. 30 (1994) 383.10.1016/0956-716X(94)90393-XSuche in Google Scholar

[66] Y. Ma, M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon: Mater. Trans. JIM 37 (1996) 336.10.2320/matertrans1989.37.336Suche in Google Scholar

[67] R.Z. Valiev, D.A. Salimonenko, N.K. Tsenev, P.B. Berbon, T.G. Langdon: Scripta Mater. 37 (1997) 1945.10.1016/S1359-6462(97)00387-4Suche in Google Scholar

[68] Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, T.G. Langdon: Acta Mater. 48 (2000) 3633.10.1016/S1359-6454(00)00182-8Suche in Google Scholar

[69] S. Komura, Z. Horita, M. Furukawa, M. Nemoto, T.G. Langdon: Metall. Mater. Trans. A 32A (2001) 707.10.1007/s11661-001-1006-9Suche in Google Scholar

[70] D.H. Shin, D.-Y. Hwang, Y.-J. Oh, K.-T. Park: Metall. Mater. Trans. A 35 (2004) 825.10.1007/s11661-004-0009-8Suche in Google Scholar

[71] R.C. Gifkins, T.G. Langdon: J. Inst. Metals 93 (1964 –1965) 347.Suche in Google Scholar

[72] H. Van Swygenhoven, A. Caro: Appl. Phys. Lett. 71 (1997) 1652.10.1063/1.119785Suche in Google Scholar

[73] J. Schiøtz, F.D. Di Tolla, K.W. Jacobsen: Nature 391 (1998) 561.10.1038/35328Suche in Google Scholar

[74] H. Van Swygenhoven, M. Spaczer, A. Caro, D. Farkas: Phys. Rev. 60 (1999) 22.10.1103/PhysRevB.60.22Suche in Google Scholar

[75] L. Lu, M.L. Sui, K. Lu: Science 287 (2000) 1463.10.1126/science.287.5457.1463Suche in Google Scholar

[76] R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, T.C. Lowe: J. Mater. Res. 17 (2002) 5.10.1557/JMR.2002.0002Suche in Google Scholar

[77] R.Z. Valiev, E.V. Kozlov, Yu.F. Ivanov, J. Lian, A.A. Nazarov, B. Baudelet: Acta Metall. Mater. 42 (1994) 2467.10.1016/0956-7151(94)90326-3Suche in Google Scholar

[78] H. Van Swygenhoven, J.R. Weertman: Scripta Mater. 49 (2003) 625.10.1016/S1359-6462(03)00399-3Suche in Google Scholar

[79] R.Z. Valiev: Nature Mater. 3 (2004) 511.10.1038/nmat1180Suche in Google Scholar PubMed

[80] Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, T.G. Langdon: J. Mater. Res. 11 (1996) 1880.10.1557/JMR.1996.0239Suche in Google Scholar

[81] R.L. Bell, C. Graeme-Barber, T.G. Langdon: Trans. AIME 239 (1967) 1821.Suche in Google Scholar

[82] T.G. Langdon: Metall. Trans. 3 (1972) 797.10.1007/BF02647651Suche in Google Scholar

Appendix

Figure 2 illustrates three orthogonal displacements, u, v and w, arising from grain boundary sliding between two adjacent grains. The sliding contribution, ξ, may be estimated by determining the value of εgbs from individual measurements of any of these three displacements.

It is apparent from Fig. 4 that the individual sliding displacements are related through the expression

(3) u=vtanψ+wtanθ

If individual measurements of u are taken along a longitudinal marker line at every point where the marker line intersects a grain boundary, the sliding strain is given by [81]

(4) εgbs=n1u¯ 1

where n is the number of grains per unit length, is the average value of u and the subscript l denotes taking measurements along a longitudinal line.

If a longitudinal line is used to record measurements of w, the sliding strain is given by [82]

(5) εgbs=kn1w¯ 1

where is the average value and k′ is a constant having a value estimated as 1.5.

If measurements are taken of the offsets v perpendicular to the specimen surface, the easiest procedure is to take the measurements at randomly selected boundaries and the sliding strain is given by [82]

(6) εgbs=knrv¯ r

where k″ is a constant having a value of 1.1 for a polished surface and 1.5 for an annealed surface, is the average value and the subscript r denotes randomly selected boundaries.

Received: 2004-12-17
Accepted: 2005-03-08
Published Online: 2022-01-28

© 2005 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles Basic
  5. Identifying creep mechanisms in plastic flow
  6. A unified microstructural metal plasticity model applied in testing, processing, and forming of aluminium alloys
  7. Implications of non-negligible microstructural variations during steady-state deformation
  8. Tertiary creep of metals and alloys
  9. Interactions between particles and low-angle dislocation boundaries during high-temperature deformation
  10. Strain-rate sensitivity of ultrafine-grained materials
  11. Transient plastic flow at nominally fixed structure due to load redistribution
  12. Vacancy concentrations determined from the diffuse background scattering of X-rays in plastically deformed copper
  13. Effect of heating rate in α + γ dual-phase field on lamellar microstructure and creep resistance of a TiAl alloy
  14. About stress reduction experiments during constant strain-rate deformation tests
  15. Finite-element modelling of anisotropic single-crystal superalloy creep deformation based on dislocation densities of individual slip systems
  16. Variational approach to subgrain formation
  17. Articles Applied
  18. Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires
  19. Creep properties at 125 °C of an AM50 Mg alloy modified by Si additions
  20. Dependence of mechanical strength on grain structure in the γ′ and oxide dispersions-trengthened nickelbase superalloy PM 3030
  21. On the improvement of the ductility of molybdenum by spinel (MgAl2O4) particles
  22. Hot workability and extrusion modelling of magnesium alloys
  23. Characterization of hot-deformation behaviour of Zircaloy-2: a comparison between kinetic analysis and processing maps
  24. Requirements for microstructural investigations of steels used in modern power plants
  25. Influence of Lüders band formation on the cyclic creep behaviour of a low-carbon steel for piping applications
  26. Creep and creep rupture behaviour of 650 °C ferritic/martensitic super heat resistant steels
  27. Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites
  28. Notifications/Mitteilungen
  29. Personal/Personelles
  30. News/Aktuelles
  31. Conferences/Konferenzen
Heruntergeladen am 31.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2005-0096/html
Button zum nach oben scrollen