Startseite Technik About stress reduction experiments during constant strain-rate deformation tests
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

About stress reduction experiments during constant strain-rate deformation tests

  • Tomas Kruml , Olivier Coddet und Jean-Luc Martin EMAIL logo
Veröffentlicht/Copyright: 28. Januar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Stress reduction experiments have been performed during constant strain-rate compression tests of single crystals of Ge, Cu, CuAl solid solutions and Ni3Al. These tests allow one to separate the components of the applied stress. They provide useful information about the spatial oscillation of the internal stress, the influence of temperature and strain-rate on the internal and the effective stresses. Activation volume values can be obtained and the Cottrell – Stokes behavior can be checked. Different features of the thermally activated deformation mechanisms in the studied crystals are discussed.


Jean-Luc Martin IPMC/SB, Swiss Federal Institute of Technology (EPFL) CH-1015 Lausanne, Switzerland Tel.: +41 21 693 3371 Fax: +41 21 693 44 70

Dedicated to Professor Wolfgang Blum on the occasion of his 65th birthday


  1. The authors would like to express their gratitude to Fonds National Suisse for supporting this research. They acknowledge the discussion of the first results with Dr. Milicka, Prof. Blum, and Prof. Nix. The Cu–Al single crystals were kindly provided by Prof. Neuhäuser.

References

[1] A. Seeger, J. Diehl, S. Mader, H. Rebstock: Phil. Mag. 2 (1957) 323.10.1080/14786435708243823Suche in Google Scholar

[2] J. Polak: Cyclic Plasticity and Low Cycle Fatigue Life of Metals, Elsevier, Amsterdam (1991).Suche in Google Scholar

[3] A.H. Cottrell, R.J. Stokes: Proc. Roy. Soc. A 233 (1955) 17.Suche in Google Scholar

[4] W. Bochniak: Acta Metall. Mater. 43 (1995) 225.Suche in Google Scholar

[5] H. Garmestani, M.R. Vaghar, E.W. Hart: Int. J. of Plasticity 17 (2001) 1367.10.1016/S0749-6419(00)00089-9Suche in Google Scholar

[6] G.B. Gibbs: Phil. Mag. 13 (1966) 317.10.1080/14786436608212610Suche in Google Scholar

[7] K. Milicka: Acta Mater. 47 (1999) 1831.10.1016/S1359-6454(99)00043-9Suche in Google Scholar

[8] M.J. Mills, J.C. Gibeling, W.D. Nix: Acta Metall. 33 (1985) 1503.10.1016/0001-6160(85)90051-3Suche in Google Scholar

[9] A. Orlova, K. Milicka, F. Dobes: Mater. Sci. Eng. A 194 (1995) 9.10.1016/0921-5093(94)09661-9Suche in Google Scholar

[10] W. Blum, A. Finkel: Acta Metall. 30 (1982) 1705.10.1016/0001-6160(82)90192-4Suche in Google Scholar

[11] T. Kruml, O. Coddet, G. Saada, J.L. Martin: Phil. Mag. Letters 83 (2003) 651.10.1080/09500830310001612092Suche in Google Scholar

[12] T. Kruml, O. Coddet, J.L. Martin: Mater. Sci. Eng. A 387 (2004) 72.10.1016/j.msea.2004.01.066Suche in Google Scholar

[13] T. Kruml, J.L. Martin: Mater. Sci. Forum 426–432 (2003) 1861.Suche in Google Scholar

[14] D. Caillard, J.L. Martin: Thermally activated mechanisms in crystal plasticity, Pergamon, New York (2003) p. 227.Suche in Google Scholar

[15] P. Spätig, J. Bonneville, J.L. Martin: Mater. Sci. Eng. A 167 (1993) 73.10.1016/0921-5093(93)90339-GSuche in Google Scholar

[16] C. Dupas, N. Zuodar, O. Coddet, T. Kruml, J.L. Martin: J. Phys. Condens. Matter 14 (2002) 12989.10.1088/0953-8984/14/48/342Suche in Google Scholar

[17] K. Nyilas, C. Dupas, L. Zsoldos, T. Ungár, T. Kruml, J.L. Martin: Proceedings of the 25th Risø Int. Symp. On Mater. Sc., Risø Nat. Lab., Roskilde (2004) p. 465.Suche in Google Scholar

[18] J. Friedel: Dislocations, Pergamon, Oxford (1964) p. 226.Suche in Google Scholar

[19] F.R.N. Nabarro: Acta Metall. 38 (1990) 161.10.1016/0956-7151(90)90044-HSuche in Google Scholar

[20] A. Couret, Y.Q. Sun, P.B. Hirsch: Phil. Mag. A 67 (1993) 29.10.1080/01418619308207141Suche in Google Scholar

[21] G. Saada, P. Veyssière, in: F.R.N. Nabarro, M.S. Duesberry (Eds.), Dislocations in Solids, Vol. 11, (Amsterdam: North Holland) (2002), Chapter 61, p. 413.10.1016/S1572-4859(02)80012-2Suche in Google Scholar

Received: 2005-02-25
Accepted: 2005-03-16
Published Online: 2022-01-28

© 2005 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles Basic
  5. Identifying creep mechanisms in plastic flow
  6. A unified microstructural metal plasticity model applied in testing, processing, and forming of aluminium alloys
  7. Implications of non-negligible microstructural variations during steady-state deformation
  8. Tertiary creep of metals and alloys
  9. Interactions between particles and low-angle dislocation boundaries during high-temperature deformation
  10. Strain-rate sensitivity of ultrafine-grained materials
  11. Transient plastic flow at nominally fixed structure due to load redistribution
  12. Vacancy concentrations determined from the diffuse background scattering of X-rays in plastically deformed copper
  13. Effect of heating rate in α + γ dual-phase field on lamellar microstructure and creep resistance of a TiAl alloy
  14. About stress reduction experiments during constant strain-rate deformation tests
  15. Finite-element modelling of anisotropic single-crystal superalloy creep deformation based on dislocation densities of individual slip systems
  16. Variational approach to subgrain formation
  17. Articles Applied
  18. Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires
  19. Creep properties at 125 °C of an AM50 Mg alloy modified by Si additions
  20. Dependence of mechanical strength on grain structure in the γ′ and oxide dispersions-trengthened nickelbase superalloy PM 3030
  21. On the improvement of the ductility of molybdenum by spinel (MgAl2O4) particles
  22. Hot workability and extrusion modelling of magnesium alloys
  23. Characterization of hot-deformation behaviour of Zircaloy-2: a comparison between kinetic analysis and processing maps
  24. Requirements for microstructural investigations of steels used in modern power plants
  25. Influence of Lüders band formation on the cyclic creep behaviour of a low-carbon steel for piping applications
  26. Creep and creep rupture behaviour of 650 °C ferritic/martensitic super heat resistant steels
  27. Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites
  28. Notifications/Mitteilungen
  29. Personal/Personelles
  30. News/Aktuelles
  31. Conferences/Konferenzen
Heruntergeladen am 31.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2005-0105/html
Button zum nach oben scrollen