Abstract
In the present study, we investigate pseudoelastic pull –pull cycling of ultra-fine-grained (40 nm) Ni-rich (50.9 at.% Ni) NiTi shape-memory wires at temperatures ranging from 301 to 323 K. Strain-controlled experiments were performed using incremental strain steps and different constant maximum strains. Pull-pull cycling results in decreasing/increasing plateau stresses characterizing the forward/reverse transformations and an accumulation of non-recoverable strain. Saturation is reached after 30 cycles. We interpret our results in terms of a microstructural scenario where dislocations, which are introduced during the martensitic transformation (lattice invariant shear) and during pull – pull cycling (dislocation plasticity), interact with the stress-induced formation of martensite. We show that the slopes of stress– strain curves naturally depend on the total strain imposed in strain-controlled testing. We also provide a dislocation-based explanation for the evolving stress levels of the loading and unloading plateaus during pseudoelastic cycling. And most importantly, we show how dislocations act as microstructural markers which allow the material to remember its previous stress –strain history.
-
AY and GE would like to acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) through the Sino-German project EG101/10-1. MS acknowledges financial support by the Comisión Nacional de Energia Atómica and by the Agencia Nacional de Promoción Cientifica and Technológica (grant PICT 99-03-6507).
References
[1] J. van Humbeeck: Mater. Sci. Eng. A 273 (1999) 134.10.1016/S0921-5093(99)00293-2Search in Google Scholar
[2] T. Duerig, A. Pelton, D. Stöckel: Mater. Sci. Eng. A 273 (1999) 149.10.1016/S0921-5093(99)00294-4Search in Google Scholar
[3] T. Saburi, in: K. Otsuka, C.M. Wayman (Eds.), Shape Memory Materials: Cambridge University Press, Cambridge UK (1998) 49.Search in Google Scholar
[4] S. Miyazaki, in: K. Otsuka, C.M. Wayman (Eds.), Shape Memory Materials: Cambridge University Press, Cambridge, UK (1998) 267.Search in Google Scholar
[5] K. Otsuka, X. Ren: Intermetallics 7 (1999) 511.10.1016/S0966-9795(98)00070-3Search in Google Scholar
[6] K. Otsuka, T. Kakeshita: MRS Bulletin 27 (2002) 91.10.1557/mrs2002.43Search in Google Scholar
[7] T.W. Duerig: MRS Bulletin 27 (2002) 101.10.1557/mrs2002.44Search in Google Scholar
[8] S. Miyazaki, in: T.W. Duerig, K.N. Melton, D. Stöckel, C.M. Wayman (Eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London (1990) 394.10.1016/B978-0-7506-1009-4.50037-8Search in Google Scholar
[9] G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner: Mater. Sci. Eng A 378 (2004) 24.10.1016/j.msea.2003.10.327Search in Google Scholar
[10] N.B. Morgan, C.M. Friend: J. Phys. IV France 11 (2001) 8.Search in Google Scholar
[11] N.B. Morgan: Mater. Sci. Eng. A 378 (2004) 616.10.1016/j.msea.2003.10.326Search in Google Scholar
[12] K. Otsuka, C.M. Wayman, in: K. Otsuka, C.M. Wayman (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge, UK (1998) 1.Search in Google Scholar
[13] E. Hornbogen, in: W.G.H. Bunk (Ed.), Advanced Structural and Functional Materials, Springer-Verlag, Heidelberg (1991) 133.10.1007/978-3-642-49261-7_5Search in Google Scholar
[14] M. Ahlers: Phil. Mag. 83 (2002) 1093.10.1080/01418610208240019Search in Google Scholar
[15] K. Otsuka, C.M. Wayman, in: K. Otsuka, C.M. Wayman (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge, UK (1998) 27.Search in Google Scholar
[16] P. Wollants, M. De Bonte, J.R. Roos: Z. Metallkd. 70 (1979) 113.Search in Google Scholar
[17] J.W. Christian: The Theory of Transformations in Metals and Alloys – Part II, Pergamon, Oxford (2002) 1103.10.1016/B978-008044019-4/50022-2Search in Google Scholar
[18] K. Otsuka, C.M. Wayman, K. Nakai, H. Sakamoto, K. Shiumizu: Acta Met. 24 (1976) 207.10.1016/0001-6160(76)90071-7Search in Google Scholar
[19] J. van Humbeeck, L.J. Delaey: J. de Phys. 10-C5 (1981) 1007.Search in Google Scholar
[20] M. Wuttig, in: T.W. Duerig, K.N. Melton, D. Stöckel, C.M. Way-man (Eds.), Engineering Aspects of Shape Memory Alloys, But-terworth-Heinemann, London (1990) 488.10.1016/B978-0-7506-1009-4.50046-9Search in Google Scholar
[21] J. van Humbeeck: J. of Alloys and Compounds 58 (2003) 355.Search in Google Scholar
[22] A.G. Rozner, R.J. Wasilewski: J. Inst. Met. 94 (1966) 169.Search in Google Scholar
[23] R.J. Wasilewski: Scripta Met. 5 (1971) 127.10.1016/0036-9748(71)90043-3Search in Google Scholar
[24] S. Miyazaki, K. Otsuka, Y. Suzuki: Scripta Met. 15 (1981) 287.10.1016/0036-9748(81)90346-XSearch in Google Scholar
[25] A.L. McKelvey, R.O. Ritchie: Phil. Mag. A 80 (2000) 1759.10.1080/01418610008219082Search in Google Scholar
[26] M. Ahlers: Prog. Mater. Sci. 30 (1986) 135.10.1016/0079-6425(86)90007-1Search in Google Scholar
[27] J.L. Pelegrina, R. Romero: Mater. Sci. Eng. A 63 (1996) 221.Search in Google Scholar
[28] M. Sade, A. Yawny, F.C. Lovey, C.J. Damiani: J. Phys. IV 112 (2003) 483.Search in Google Scholar
[29] A. Yawny, M. Sade, F.C. Lovey: Mater. Sci. Eng. A 290 (2000) 108.10.1016/S0921-5093(00)00925-4Search in Google Scholar
[30] K. Otsuka, X. Ren: Scripta Mater. 50 (2004) 207.10.1016/j.scriptamat.2003.09.013Search in Google Scholar
[31] J.L. Pelegrina, M. Ahlers: Scripta Mat. 50 (2004) 213.10.1016/j.scriptamat.2003.09.022Search in Google Scholar
[32] K. Otsuka, in: T.W. Duerig, K.N. Melton, D. Stöckel, C.M. Way-man (Eds.), Engineering Aspects of Shape Memory Alloys, But-terworth-Heinemann, London (1990) 36.10.1016/B978-0-7506-1009-4.50007-XSearch in Google Scholar
[33] S. Miyazaki, K. Otsuka: Phil. Mag. A 50 (1984) 393.10.1080/01418618408244235Search in Google Scholar
[34] E. Hornbogen: Z. Metallkd. 86 (1995) 341.Search in Google Scholar
[35] International Patent WO 87/07961 (30.12.87 87/29).Search in Google Scholar
[36] K.N. Melton, O. Mercier: Acta Met. 27 (1979) 137.10.1016/0001-6160(79)90065-8Search in Google Scholar
[37] S. Miyazaki, T. Imai, Y. Igo, K. Otsuka: Met. Trans. A 17 (1986) 115.10.1007/BF02644447Search in Google Scholar
[38] N.B. Morgan: Engineering Doctorate Thesis, Dept. Materials Medical Sciences, Cranfield University, UK (1999.).Search in Google Scholar
[39] T. Duerig: Opening lecture of SMST 2003, Monterey, May 2003Search in Google Scholar
[40] J. van Humbeeck: Scripta Mater. 50 (2004) 181.10.1016/j.scriptamat.2003.09.021Search in Google Scholar
[41] K. Gall, H. Sehitoglu, Y. Chumlyakov, I. Kireeva, H.J. Maier: Trans. ASME 121 (1999) 19.Search in Google Scholar
[42] K. Gall, H. Sehitoglu, Y. Chumlyakov, I. Kireeva, H.J. Maier: Trans. ASME 121 (1999) 28.10.1115/1.2833805Search in Google Scholar
[43] K. Gall, H.J. Maier: Acta Mater. 50 (2002) 4643.10.1016/S1359-6454(02)00315-4Search in Google Scholar
[44] A. Heckmann, E. Hornbogen: J. Phys. IV France 112 (2003) 831.10.1051/jp4:20031010Search in Google Scholar
[45] S. Miyazaki, T. Imai, K. Otsuka, Y. Suzuki: Scripta Met. 15 (1981) 853.10.1016/0036-9748(81)90265-9Search in Google Scholar
[46] J.A. Shaw, S. Kyriakides: J. Mech. Phys. Solids 43 (1995) 1243.10.1016/0022-5096(95)00024-DSearch in Google Scholar
[47] J.A. Shaw, S. Kyriakides: Acta Mater. 45 (1997) 683.10.1016/S1359-6454(96)00189-9Search in Google Scholar
[48] Y. Liu Yinong: Mater. Sci. Eng. A 271 (1999) 506.10.1016/S0921-5093(99)00260-9Search in Google Scholar
[49] G. Tan, Y. Liu, P. Sittner, M. Saunders: Scripta Mater. 50 (2004) 193.10.1016/j.scriptamat.2003.09.018Search in Google Scholar
[50] A.H. Cottrell, in: The Relation between the Structure and Mechanical Properties of Metals, Proc. of a Conference organized by NPL (Symposium No. 15), Teddington, UK, Vol. II (1963) 457.Search in Google Scholar
[51] E. Hornbogen, K.-H. Zum Gahr: Z. Metallkd. 67 (1976) 79.Search in Google Scholar
[52] J.C. Earthman, G. Eggeler, B. Ilschner: Mater. Sci. Eng. A 110 (1989) 103.10.1016/0921-5093(89)90161-5Search in Google Scholar
[53] T. Sawaguchi, G. Kaustraeter, A. Yawny, M. Wagner, G. Eggeler: Met. and Mater. Trans A 34 (2003) 2847.10.1007/s11661-003-0186-xSearch in Google Scholar
[54] F. Aurichio, R.L. Taylor, J. Lubliner: Comput. Meth. Appl. Mech. Eng. 146 (1997) 281.10.1016/S0045-7825(96)01232-7Search in Google Scholar
[55] N. Rebelo, M. Perry: Min. Invas. Ther. & Allied Techn. 9 (2000) 75.10.3109/13645700009063053Search in Google Scholar
[56] http:/www.memory-metalle.deSearch in Google Scholar
[57] A. Yawny, Ch. Somsen, G. Eggeler: unplublished results.Search in Google Scholar
[58] Z.Q. Li, Q.P. Sun: Int. Journal of Plasticity 18 (2002) 1481.10.1016/S0749-6419(02)00026-8Search in Google Scholar
[59] S.W. Robertson,V. Imbeni, E.H.R. Wenk, R.O. Ritchie: J. Bio-medical Mater. Res. A 72 (2005) 190.10.1002/jbm.a.30214Search in Google Scholar PubMed
[60] G. Airoldi, G. Bellini, C. di Francesco: J. Phys. F. Met. Phys. 14 (1984) 983.10.1088/0305-4608/14/8/027Search in Google Scholar
[61] J. Khalil-Allafi, A. Dlouhy, G. Eggeler: Acta Mater. 50 (2002) 4255.10.1016/S1359-6454(02)00257-4Search in Google Scholar
[62] T. Waitz, V. Kazykhanov, H.P. Karnthaler: Acta Mater. 52 (2004) 137.10.1016/j.actamat.2003.08.036Search in Google Scholar
[63] V. Torra, A. Isalgue, F.C. Lovey, F. Martorell, F.J. Molina, M. Sade, H.J. Tachoire: Phys. IV France 113 (2004) 85.10.1051/jp4:20040019Search in Google Scholar
[64] G.E. Dieter: Mechanical Metallurgy, McGraw-Hill Book Company, London (1988)Search in Google Scholar
[65] T. Todoroki, H.J. Tamura: Japan Inst. Metals 50 (1986) 538.10.2320/jinstmet1952.50.6_538Search in Google Scholar
[66] G.B. Stachowiak, P.G. McCormic: Acta metall. 36 (1988) 291.10.1016/0001-6160(88)90006-5Search in Google Scholar
© 2005 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Identifying creep mechanisms in plastic flow
- A unified microstructural metal plasticity model applied in testing, processing, and forming of aluminium alloys
- Implications of non-negligible microstructural variations during steady-state deformation
- Tertiary creep of metals and alloys
- Interactions between particles and low-angle dislocation boundaries during high-temperature deformation
- Strain-rate sensitivity of ultrafine-grained materials
- Transient plastic flow at nominally fixed structure due to load redistribution
- Vacancy concentrations determined from the diffuse background scattering of X-rays in plastically deformed copper
- Effect of heating rate in α + γ dual-phase field on lamellar microstructure and creep resistance of a TiAl alloy
- About stress reduction experiments during constant strain-rate deformation tests
- Finite-element modelling of anisotropic single-crystal superalloy creep deformation based on dislocation densities of individual slip systems
- Variational approach to subgrain formation
- Articles Applied
- Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires
- Creep properties at 125 °C of an AM50 Mg alloy modified by Si additions
- Dependence of mechanical strength on grain structure in the γ′ and oxide dispersions-trengthened nickelbase superalloy PM 3030
- On the improvement of the ductility of molybdenum by spinel (MgAl2O4) particles
- Hot workability and extrusion modelling of magnesium alloys
- Characterization of hot-deformation behaviour of Zircaloy-2: a comparison between kinetic analysis and processing maps
- Requirements for microstructural investigations of steels used in modern power plants
- Influence of Lüders band formation on the cyclic creep behaviour of a low-carbon steel for piping applications
- Creep and creep rupture behaviour of 650 °C ferritic/martensitic super heat resistant steels
- Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites
- Notifications/Mitteilungen
- Personal/Personelles
- News/Aktuelles
- Conferences/Konferenzen
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Identifying creep mechanisms in plastic flow
- A unified microstructural metal plasticity model applied in testing, processing, and forming of aluminium alloys
- Implications of non-negligible microstructural variations during steady-state deformation
- Tertiary creep of metals and alloys
- Interactions between particles and low-angle dislocation boundaries during high-temperature deformation
- Strain-rate sensitivity of ultrafine-grained materials
- Transient plastic flow at nominally fixed structure due to load redistribution
- Vacancy concentrations determined from the diffuse background scattering of X-rays in plastically deformed copper
- Effect of heating rate in α + γ dual-phase field on lamellar microstructure and creep resistance of a TiAl alloy
- About stress reduction experiments during constant strain-rate deformation tests
- Finite-element modelling of anisotropic single-crystal superalloy creep deformation based on dislocation densities of individual slip systems
- Variational approach to subgrain formation
- Articles Applied
- Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires
- Creep properties at 125 °C of an AM50 Mg alloy modified by Si additions
- Dependence of mechanical strength on grain structure in the γ′ and oxide dispersions-trengthened nickelbase superalloy PM 3030
- On the improvement of the ductility of molybdenum by spinel (MgAl2O4) particles
- Hot workability and extrusion modelling of magnesium alloys
- Characterization of hot-deformation behaviour of Zircaloy-2: a comparison between kinetic analysis and processing maps
- Requirements for microstructural investigations of steels used in modern power plants
- Influence of Lüders band formation on the cyclic creep behaviour of a low-carbon steel for piping applications
- Creep and creep rupture behaviour of 650 °C ferritic/martensitic super heat resistant steels
- Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites
- Notifications/Mitteilungen
- Personal/Personelles
- News/Aktuelles
- Conferences/Konferenzen