Abstract
The hot working of commercial Mg alloys differs from creep in so far that twinning is much more prevalent in the early stages and dynamic recrystallization (DRX) becomes extensive above 400 °C. Subgrains form mainly near the grain boundaries and have similar dependence on stress; they were larger in hot working tests because of the much higher temperatures. Extrusion is ideal for breaking down the cast structure as a result of the high compressive mode to minimize cracking at segregated particles and to create a deformation zone reaching near 500 °C to ensure DRX for grain refinement. The constitutive equations and microstructures from torsion testing can be utilized in modeling to guide optimization of extrusion processing.
-
The authors acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada, of the Deutsche Forschungsgemeinschaft and of the Alexander von Humboldt Foundation.
References
[1] W. Blum, in: H. Mughrabi (Ed.), Plastic Deformation and Fracture of Materials, VCH, Weinheim (1993) 359.Suche in Google Scholar
[2] W. Blum, in: R.W. Arsenault et al. (Eds.), The Johannes Weertman Symposium, TMS-AIME, Warrendale, PA (1996) 103.Suche in Google Scholar
[3] S. Straub, W. Blum, in: H.J. McQueen et al. (Eds.), Hot Workability of Steels and Light Alloys-Composites, Met. Soc. CIM, Montreal (1996) 189.Suche in Google Scholar
[4] M. Meier, Q. Zhu, W. Blum: Z. Metallkd. 84 (1993) 263.Suche in Google Scholar
[5] J. Hausselt, W. Blum: Acta Met. 14 (1976) 1027.10.1016/0001-6160(76)90133-4Suche in Google Scholar
[6] W. Blum, H.J. McQueen, in: J.H. Driver et al. (Eds.), Aluminum Alloys, Physical and Mechanical Properties (ICAA5), Mat. Sci. Forum, 217–222 (1996) 31.10.4028/www.scientific.net/MSF.217-222.31Suche in Google Scholar
[7] W. Blum, Q. Zhu, R. Merkel, H.J. McQueen: Z. Metalkd. 87 (1996) 341.Suche in Google Scholar
[8] W. Blum, Q. Zhu, R. Merkel, H.J. McQueen: Mat. Sci. Eng. A 205 (1996) 23.10.1016/0921-5093(95)09990-5Suche in Google Scholar
[9] H.J. McQueen, W. Blum, in: T.R. McNelley (Ed.), Recrystallization and Related Topics (Rex ’96), Monterey Inst. Advanced Studies, CA (1997) 123.Suche in Google Scholar
[10] H.J. McQueen, W. Blum, in: T. Sato (Ed.), Al Alloys Physical and Mechanical Properties (ICAA6), Japan Inst. Metals, Japan (1998) 99.Suche in Google Scholar
[11] H.J. McQueen, W. Blum, Q. Zhu, V. Demuth, in: J.J. Jonas, T.R. Bieler, K.J. Bowman (Eds.), Advances in Hot Deformation Textures and Microstructures, TMS-AIME, Warrendale, PA (1993) 235.Suche in Google Scholar
[12] H.J. McQueen, W. Blum: Mater. Sci. Eng. A 290 (2000) 95.10.1016/S0921-5093(00)00933-3Suche in Google Scholar
[13] H.J. McQueen, W. Blum: Aluminium 80 [10] (2004) 1151.10.1016/S0001-2092(06)60700-XSuche in Google Scholar
[14] E.V. Konopleva, H.J. McQueen, W. Blum: Microstructural Sci. 22 (1995) 297.Suche in Google Scholar
[15] H.J. McQueen, in: T.G. Langdon, H.D. Merchant (Eds.), Hot Deformation of Aluminum Alloys, TMS-AIME, Warrendale, PA (1991) 31.Suche in Google Scholar
[16] H.J. McQueen, D.L. Bourell: J. Met. 39 [7] (1987) 28.10.1007/BF03257647Suche in Google Scholar
[17] W. Blum, P. Weidinger, B. Watzinger, R. Sedlacek, R. Rosch, H.-G. Haldenwanger: Z. Metallkd. 88 (1997) 636.Suche in Google Scholar
[18] W. Blum, B. Watzinger, P. Weidinger, in: B.L. Mordike, K.U. Kainer (Eds.), Magnesium Alloys and their Applications, Werkstoff-Informationsgesellschaft, Frankfurt (1998) 49.Suche in Google Scholar
[19] P. Zhang, B. Watzinger, Q.P. Kong, W. Blum: Key Engineering Mat. 171–174 (2000) 609.Suche in Google Scholar
[20] P. Zhang, B. Watzinger, W. Blum: Phys. Stat. Sol. A 175 (1999) 481.10.1002/(SICI)1521-396X(199910)175:2<481::AID-PSSA481>3.0.CO;2-JSuche in Google Scholar
[21] W. Blum, B. Watzinger, P. Zhang: Adv. Eng. Mat. 2 (2000) 349.10.1002/1527-2648(200006)2:6<349::AID-ADEM349>3.0.CO;2-GSuche in Google Scholar
[22] W. Blum, P. Zhang, B. Watzinger, B.V. Grossmann, H.G. Haldenwanger: (ICSMA12, M. Mills), Mater. Sci. Eng. A 319 (2001) 735.10.1016/S0921-5093(00)02016-5Suche in Google Scholar
[23] W. Blum, B. Watzinger, P. Zhang, B.V. Grossmann, H. Lipowsky, H.G. Haldenwanger, in: Y. Kojima, T. Aizawa, S. Kamado (Eds.), Magnesium Alloys 2000, (Proc. First Nagaoka Intnl. Workshop on Magnesium Platform Science and Technology 2000), Mat. Sci. Forum, 350 –351 (2000) 141.10.4028/www.scientific.net/MSF.350-351.141Suche in Google Scholar
[24] A. Mwembela, H.J. McQueen, in: C. Bickert (Ed.), Light Metals Processing and Applications, Met. Soc. CIMM, Montreal (1993) 523.Suche in Google Scholar
[25] A. Mwembela, H. J. McQueen, in: H.J. McQueen, E.V. Konopleva N.D. Ryan (eds.), Hot Workability of Steels and Light Alloys-Composites, Met. Soc. CIM, Montreal (1996) 181.Suche in Google Scholar
[26] A. Mwembela, E.V. Konopleva, H.J. McQueen: Scripta Metal. Mater. 37 (1997) 1789.10.1016/S1359-6462(97)00344-8Suche in Google Scholar
[27] H.J. McQueen, A. Mwembela, M.M. Myshlyaev, E.V. Konopleva, in: B.L. Mordike, K.L. Kainer (Eds.), Magnesium Alloys and Their Applications, Wolfsburg, Germany, Werkstoff Info-Gesellschaft, Frankfurt (1998) 201.Suche in Google Scholar
[28] H.J. McQueen, M. Myshlyaev, M. Sauerborn, A. Mwembela, in: H. Kaplan et al. (Eds.), Magnesium Technology 2000, TMS-AIME Warrendale PA (2000) 355.Suche in Google Scholar
[29] M.M. Myshlyaev, H.J. McQueen, A. Mwembela, E.V. Konopleva: Mater. Sci. Eng. A 337 (2002) 121.10.1016/S0921-5093(02)00007-2Suche in Google Scholar
[30] M.M. Myshlyaev, A. Mwembela, H.J. McQueen: Can. Metal. Quart. 42 (2002) 97.10.1179/cmq.2003.42.1.97Suche in Google Scholar
[31] A. Mwembela, M.M Myshlyaev, H.J. McQueen, in: T. Lewis, M. Charron (Eds.), Enabling Technologies for Light Metals and Composite Materials, Met. Soc. CIM, Montreal (2002) 915.Suche in Google Scholar
[32] M. Sauerborn, H.J. McQueen, in: M. Bouchard, A. Faucher (Eds.), Light Metals 1999, Met. Soc. CIMM, Montreal (1999) 549.Suche in Google Scholar
[33] “DEFORM: Design Environment for Forming”, Scientific Forming Technologies Corporation, Columbus, OH.Suche in Google Scholar
[34] M. Sauerborn, H.J. McQueen: Mater. Sci. Tech. 14 (1998) 1029.10.1179/026708398790613371Suche in Google Scholar
[35] E. Herba, H.J. McQueen: Mater. Sci. Tech. 14 (1998) 1057.10.1179/026708398790613524Suche in Google Scholar
[36] E.M. Herba, H.J. McQueen: Mater. Sci. Eng. A 372 (2004) 1.10.1016/j.msea.2003.08.006Suche in Google Scholar
[37] H.J. McQueen, Y. Yao, in: J.F. Nie et al. (Eds.), Aluminum Alloys–Physical Mechanical Properties (ICAA9), Monash University, Melbourne, Australia (2004) 610.Suche in Google Scholar
[38] H.J. McQueen, E.V. Konopleva, in: Y. Verreman et al. (Eds.), Mathematical Modeling of Metal Processing and Manufacturing, Met. Soc. CIM, Montreal (2000) (published electronically).Suche in Google Scholar
[39] H.J. McQueen, M.M. Myshlyaev, E. Konopleva, P. Sakaris: Can. Met. Quart. 37 (1998) 125.Suche in Google Scholar
[40] H.J. McQueen, D.L. Bourell: J. Mat. Shaping, Tech. 5 (1987) 53.10.1007/BF02833686Suche in Google Scholar
[41] O.A. Kaibyshev, in: T. Chandra (Ed.), Recrystallization (’90) in Metals and Materials, TMS-AIME, Warrendale, PA (1990) 855.Suche in Google Scholar
[42] R.O. Kaibyshev, B.K. Solokov: Phys. Met. Metall. 74 [1] (1992) 72.Suche in Google Scholar
[43] R.O. Kaibyshev, O.Sh. Sitidikov, A.M. Galiev: Phys. Met. Metall. 80 (1995) 470.Suche in Google Scholar
[44] S.E. Burrows, F.J. Humphreys, S.W. White, in: P. Haasen et al. (Eds.), Strength of Metals and Alloys (ICSMA5), Pergamon Press, Oxford (1979) 607.10.1016/B978-1-4832-8412-5.50104-1Suche in Google Scholar
[45] S.E. Ion, F.J. Humphreys, S.H. White: Acta Metal. 30 (1982) 1909.10.1016/0001-6160(82)90031-1Suche in Google Scholar
[46] F.J. Humphreys, in: N. Hansen et al. (Eds.), Deformation of Polycrystals, RISO Natl. Lab., Roskilde, Denmark (1981) 305.Suche in Google Scholar
[47] H.J. McQueen, E.V. Konopleva, in: J. Hryn (Ed.), Magnesium Technology 2001, TMS-AIME, Warrandale, PA (2001) 227.Suche in Google Scholar
[48] S.S. Vagarali, T.G. Langdon: Acta Metal. 29 (1981) 1969.10.1016/0001-6160(81)90034-1Suche in Google Scholar
[49] S.S. Vagarali, T.G. Langdon: Acta Metal. 30 (1982) 1157.10.1016/0001-6160(82)90009-8Suche in Google Scholar
[50] H.J. McQueen, E.V. Konopleva, in: D.S. Wilkinson et al. (Eds.), Symp. Advances in Industrial Materials, Met. Soc. CIMM, Montreal (1998) 149.Suche in Google Scholar
[51] H. Sato, M. Suzuki, K. Maruyama, H. Oikawa: Key. Eng. Mater. 171 (2000) 601.Suche in Google Scholar
[52] H. Sato, Y. Masuda, H. Oikawa, in: Y. Hosoi et al. (Eds.), Aspects of High Temp. Deformation and Fracture in Crystalline Materials (JMIS7), Japan Inst. Metals. Japan (1993) 107.Suche in Google Scholar
[53] H.J. McQueen, O.C. Celliers: Materials Forum (Australia) 17 (1993) 1.Suche in Google Scholar
[54] H.J. McQueen, O.C. Celliers: Can. Metal. Quart. 36 (1997) 73.Suche in Google Scholar
[55] R. Chadwick: Metal. Review 37 (1959) 75.Suche in Google Scholar
[56] D.S. Salonine, H.J. McQueen, in: J.F. Nie et al. (Eds.), Aluminum Alloys: Physical Mechanical Properties (ICAA9), Monash Univ. Melbourne, Australia (2004) 1086.Suche in Google Scholar
[57] H.J. McQueen, M.E. Kassner, in: K. Jata, et al. (Eds.), Light Weight Alloys for Aerospace Application, TMS-AIME, Warrendale, PA (2001) 63.Suche in Google Scholar
[58] H.J. McQueen: JOM (J. Metals) 50 [6] (1998) 28.10.1007/s11837-998-0124-xSuche in Google Scholar
[59] B.M. Closset, J.-F. Peey, in: B.L. Mordike, K.L. Kainer (Eds.), Magnesium Alloys and Their Applications, Wolfsburg, Germany, Werkstoff Info.-Gesellschaft, Frankfurt (1998) 195.Suche in Google Scholar
[60] K. Buehler: Materials and Manufacturing Processes 4 (1989) 603.10.1080/10426918908956317Suche in Google Scholar
© 2005 Carl Hanser Verlag, München
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Identifying creep mechanisms in plastic flow
- A unified microstructural metal plasticity model applied in testing, processing, and forming of aluminium alloys
- Implications of non-negligible microstructural variations during steady-state deformation
- Tertiary creep of metals and alloys
- Interactions between particles and low-angle dislocation boundaries during high-temperature deformation
- Strain-rate sensitivity of ultrafine-grained materials
- Transient plastic flow at nominally fixed structure due to load redistribution
- Vacancy concentrations determined from the diffuse background scattering of X-rays in plastically deformed copper
- Effect of heating rate in α + γ dual-phase field on lamellar microstructure and creep resistance of a TiAl alloy
- About stress reduction experiments during constant strain-rate deformation tests
- Finite-element modelling of anisotropic single-crystal superalloy creep deformation based on dislocation densities of individual slip systems
- Variational approach to subgrain formation
- Articles Applied
- Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires
- Creep properties at 125 °C of an AM50 Mg alloy modified by Si additions
- Dependence of mechanical strength on grain structure in the γ′ and oxide dispersions-trengthened nickelbase superalloy PM 3030
- On the improvement of the ductility of molybdenum by spinel (MgAl2O4) particles
- Hot workability and extrusion modelling of magnesium alloys
- Characterization of hot-deformation behaviour of Zircaloy-2: a comparison between kinetic analysis and processing maps
- Requirements for microstructural investigations of steels used in modern power plants
- Influence of Lüders band formation on the cyclic creep behaviour of a low-carbon steel for piping applications
- Creep and creep rupture behaviour of 650 °C ferritic/martensitic super heat resistant steels
- Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites
- Notifications/Mitteilungen
- Personal/Personelles
- News/Aktuelles
- Conferences/Konferenzen
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Identifying creep mechanisms in plastic flow
- A unified microstructural metal plasticity model applied in testing, processing, and forming of aluminium alloys
- Implications of non-negligible microstructural variations during steady-state deformation
- Tertiary creep of metals and alloys
- Interactions between particles and low-angle dislocation boundaries during high-temperature deformation
- Strain-rate sensitivity of ultrafine-grained materials
- Transient plastic flow at nominally fixed structure due to load redistribution
- Vacancy concentrations determined from the diffuse background scattering of X-rays in plastically deformed copper
- Effect of heating rate in α + γ dual-phase field on lamellar microstructure and creep resistance of a TiAl alloy
- About stress reduction experiments during constant strain-rate deformation tests
- Finite-element modelling of anisotropic single-crystal superalloy creep deformation based on dislocation densities of individual slip systems
- Variational approach to subgrain formation
- Articles Applied
- Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires
- Creep properties at 125 °C of an AM50 Mg alloy modified by Si additions
- Dependence of mechanical strength on grain structure in the γ′ and oxide dispersions-trengthened nickelbase superalloy PM 3030
- On the improvement of the ductility of molybdenum by spinel (MgAl2O4) particles
- Hot workability and extrusion modelling of magnesium alloys
- Characterization of hot-deformation behaviour of Zircaloy-2: a comparison between kinetic analysis and processing maps
- Requirements for microstructural investigations of steels used in modern power plants
- Influence of Lüders band formation on the cyclic creep behaviour of a low-carbon steel for piping applications
- Creep and creep rupture behaviour of 650 °C ferritic/martensitic super heat resistant steels
- Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites
- Notifications/Mitteilungen
- Personal/Personelles
- News/Aktuelles
- Conferences/Konferenzen