Startseite Polycarbonate-based polyurethane elastomers: temperature-dependence of tensile properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Polycarbonate-based polyurethane elastomers: temperature-dependence of tensile properties

  • Zdeněk Hrdlička EMAIL logo , Antonín Kuta , Rafał Poręba und Milena Špírková
Veröffentlicht/Copyright: 30. Oktober 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Novel polyurethane thermoplastic elastomers were prepared from polycarbonate diols, butane-1,4-diol (chain extender) and hexamethylene diisocyanate. They differ in the kind of macrodiol used and the ratio of macrodiol to chain extender OH groups (hence, in hard segment contents). The tensile properties of the elastomers at low and elevated temperatures were determined and discussed with regard to polyurethane composition and polycarbonate diol structure.

[1] Aurilia, M., Piscitelli, F., Sorrentino, L., Lavorgna, M., & Iannace, S. (2011). Detailed analysis of dynamic mechanical properties of TPU nanocomposite: The role of the interfaces. European Polymer Journal, 47, 925–936. DOI: 10.1016/j.eurpolymj.2011.01.005. http://dx.doi.org/10.1016/j.eurpolymj.2011.01.00510.1016/j.eurpolymj.2011.01.005Suche in Google Scholar

[2] Bagdi, K., Molnár, K., Sajó, I., & Pukánszky, B. (2011a). Specific interactions, structure, and properties in segmented polyurethane elastomers. eXPRESS Polymer Letters, 5, 417–427. DOI: 10.3144/expresspolymlett.2011.41. http://dx.doi.org/10.3144/expresspolymlett.2011.4110.3144/expresspolymlett.2011.41Suche in Google Scholar

[3] Bagdi, K., Molnár, K., Wacha, A., Bóta, A., & Pukánszky, B. (2011b). Hierarchical structure of phase-separated segmented polyurethane elastomers and its effect on properties. Polymer International, 60, 529–536. DOI: 10.1002/pi.3003. http://dx.doi.org/10.1002/pi.300310.1002/pi.3003Suche in Google Scholar

[4] Christenson, E. M., Anderson, J. M., & Hiltner, A. (2006). Antioxidant inhibition of poly(carbonate urethane) in vivo biodegradation. Journal of Biomedical Materials Research Part A, 76, 480–490. DOI: 10.1002/jbm.a.30506. http://dx.doi.org/10.1002/jbm.a.3050610.1002/jbm.a.30506Suche in Google Scholar PubMed

[5] Eceiza, A., Larrañaga, M., de la Caba, K., Kortaberria, G., Marieta, C., Corcuera, M. A., & Mondragon, I. (2008a). Structure-property relationships of thermoplastic polyurethane elastomers based on polycarbonate diols. Journal of Applied Polymer Science, 108, 3092–3103. DOI: 10.1002/app.26553. http://dx.doi.org/10.1002/app.2655310.1002/app.26553Suche in Google Scholar

[6] Eceiza, A., Martin, M. D., de la Caba, K., Kortaberria, G., Gabilondo, N., Corcuera, M. A., & Mondragon, I. (2008b). Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: Mechanical and thermal properties. Polymer Engineering & Science, 48, 297–306. DOI: 10.1002/pen.20905. http://dx.doi.org/10.1002/pen.2090510.1002/pen.20905Suche in Google Scholar

[7] Fernández-d’Arlas, B., Rueda, L., Fernández, R., Khan, U., Coleman, J. N., Mondragon, I., & Eceiza, A. (2010). Inverting polyurethanes synthesis: Effects on nano/micro-structure and mechanical properties. Soft Materials, 9, 79–93. DOI: 10.1080/1539445x.2010.525173. http://dx.doi.org/10.1080/1539445X.2010.52517310.1080/1539445X.2010.525173Suche in Google Scholar

[8] Hepburn, C. (1992). Polyurethane elastomers. London, UK: Elsevier. http://dx.doi.org/10.1007/978-94-011-2924-410.1007/978-94-011-2924-4Suche in Google Scholar

[9] Hernandez, R., Weksler, J., Padsalgikar, A., Choi, T., Angelo, E., Lin, J. S., Xu, L. C., Siedlecki, C. A., & Runt, J. (2008). A comparison of phase organization of model segmented polyurethanes with different intersegment compatibilities. Macromolecules, 41, 9767–9776. DOI: 10.1021/ma8014454. http://dx.doi.org/10.1021/ma801445410.1021/ma8014454Suche in Google Scholar

[10] Kojio, K., Nonaka, Y., Masubuchi, T., & Furukawa, M. (2004). Effect of the composition ratio of copolymerized poly(carbonate) glycol on the microphase-separated structures and mechanical properties of polyurethane elastomers. Journal of Polymer Science Part B: Polymer Physics, 42, 4448–4458. DOI: 10.1002/polb.20303. http://dx.doi.org/10.1002/polb.2030310.1002/polb.20303Suche in Google Scholar

[11] Kojio, K., Nakamura, S., & Furukawa, M. (2008). Effect of side groups of polymer glycol on microphase-separated structure and mechanical properties of polyurethane elastomers. Journal of Polymer Science Part B: Polymer Physics, 46, 2054–2063. DOI: 10.1002/polb.21540. http://dx.doi.org/10.1002/polb.2154010.1002/polb.21540Suche in Google Scholar

[12] Kojio, K., Furukawa, M., Motokucho, S., Shimada, M., & Sakai, M. (2009a). Structure-mechanical property relationships for poly(carbonate urethane) elastomers with novel soft segments. Macromolecules, 42, 8322–8327. DOI: 10.1021/ma901317t. http://dx.doi.org/10.1021/ma901317t10.1021/ma901317tSuche in Google Scholar

[13] Kojio, K., Kugumiya, S., Uchiba, Y., Nishino, Y., & Furukawa, M. (2009b). The microphase-separated structure of polyurethane bulk and thin films. Polymer Journal, 41, 118–124. DOI: 10.1295/polymj.pj2008186. http://dx.doi.org/10.1295/polymj.PJ200818610.1295/polymj.PJ2008186Suche in Google Scholar

[14] Kultys, A., Rogulska, M., Pikus, S., & Skrzypiec, K. (2009). The synthesis and characterization of new thermoplastic poly(carbonate-urethane) elastomers derived from HDI and aliphatic-aromatic chain extenders. European Polymer Journal, 45, 2629–2643. DOI: 10.1016/j.eurpolymj.2009.06.003. http://dx.doi.org/10.1016/j.eurpolymj.2009.06.00310.1016/j.eurpolymj.2009.06.003Suche in Google Scholar

[15] Kultys, A., & Rogulska, M. (2011). New thermoplastic poly (carbonate-urethane) elastomers. Polish Journal of Chemical Technology, 13, 23–30. DOI: 10.2478/v10026-011-0005-x. http://dx.doi.org/10.2478/v10026-011-0005-x10.2478/v10026-011-0005-xSuche in Google Scholar

[16] Kultys, A., Rogulska, M., & Głuchowska, H. (2011). The effect of soft-segment structure on the properties of novel thermoplastic polyurethane elastomers based on an unconventional chain extender. Polymer International, 60, 652–659. DOI: 10.1002/pi.2998. http://dx.doi.org/10.1002/pi.299810.1002/pi.2998Suche in Google Scholar

[17] Kuta, A., Hrdlička, Z., Strachota, A., & Špírková, M. (2009). The influence of macrodiol type on the mechanical properties of polyurethane materials. Materials and Manufacturing Processes, 24, 1214–1216. DOI: 10.1080/10426910902979553. http://dx.doi.org/10.1080/1042691090297955310.1080/10426910902979553Suche in Google Scholar

[18] Ma, Z. W., Hong, Y., Nelson, D. M., Pichamuthu, J. E., Leeson, C. E., & Wagner, W. R. (2011). Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: Effects of crystallinity, molecular weight, and composition on mechanical properties. Biomacromolecules, 12, 3265–3274. DOI: 10.1021/bm2007218. http://dx.doi.org/10.1021/bm200721810.1021/bm2007218Suche in Google Scholar PubMed PubMed Central

[19] Mourier, E., David, L., Alcouffe, P., Rochas, C., Méchin, F., & Fulchiron, R. (2011). Composition effects of thermoplastic segmented polyurethanes on their nanostructuring kinetics with or without preshear. Journal of Polymer Science Part B: Polymer Physics, 49, 801–811. DOI: 10.1002/polb.22251. http://dx.doi.org/10.1002/polb.2225110.1002/polb.22251Suche in Google Scholar

[20] Oprea, S. (2011). Effect of the long chain extender on the properties of linear and castor oil cross-linked PEG-based polyurethane elastomers. Journal of Materials Science, 46, 2251–2258. DOI: 10.1007/s10853-010-5064-5. http://dx.doi.org/10.1007/s10853-010-5064-510.1007/s10853-010-5064-5Suche in Google Scholar

[21] Pavličević, J., Špírková, M., Strachota, A., Mészáros Szécsényi, K., Lazić, N., & Budinski-Simendić, J. (2010). The influence of montmorillonite and bentonite addition on thermal properties of polyurethanes based on aliphatic polycarbonate diols. Thermochimica Acta, 509, 73–80. DOI: 10.1016/j.tca.2010.06.005. http://dx.doi.org/10.1016/j.tca.2010.06.00510.1016/j.tca.2010.06.005Suche in Google Scholar

[22] Poręba, R., Špírková, M., Brožová, L., Lazić, N., Pavličević, J., & Strachota, A. (2013). Aliphatic polycarbonate-based polyurethane elastomers and nanocomposites. II. Mechanical, thermal, and gas transport properties. Journal of Applied Polymer Science, 127, 329–341. DOI: 10.1002/app.37895. http://dx.doi.org/10.1002/app.3789510.1002/app.37895Suche in Google Scholar

[23] Prisacariu, C. (2011). Polyurethane elastomers. From morphology to mechanical aspects. Vienna, Austria: Springer. DOI: 10.1007/978-3-7091-0514-6. http://dx.doi.org/10.1007/978-3-7091-0514-610.1007/978-3-7091-0514-6Suche in Google Scholar

[24] Rogulska, M., Kultys, A., & Pikus, S. (2008). Studies on thermoplastic polyurethanes based on new diphenylethanederivative diols. III. The effect of molecular weight and structure of soft segment on some properties of segmented polyurethanes. Journal of Applied Polymer Science, 110, 1677–1689. DOI: 10.1002/app.28583. http://dx.doi.org/10.1002/app.2858310.1002/app.28583Suche in Google Scholar

[25] Sonnenschein, M. F., Boyer, C., Brune, D., Wendt, B. L., Myers, G., & Landes, B. (2011). Chimeric plastics: A new class of thermoplastics. Macromolecules, 44, 865–871. DOI: 10.1021/ma102362b. http://dx.doi.org/10.1021/ma102362b10.1021/ma102362bSuche in Google Scholar

[26] Špírková, M., Strachota, A., Urbanová, M., Baldrian, J., Brus, J., Šlouf, M., Kuta, A., & Hrdlička, Z. (2009). Structural and surface properties of novel polyurethane films. Materials and Manufacturing Processes, 24, 1185–1189. DOI: 10.1080/10426910902979686. http://dx.doi.org/10.1080/1042691090297968610.1080/10426910902979686Suche in Google Scholar

[27] Špírková, M., Pavličević, J., Strachota, A., Poręba, R., Bera, O., Kaprálková, L., Baldrian, J., Šlouf, M., Lazić, N., & Budinski-Simendić, J. (2011). Novel polycarbonate-based polyurethane elastomers: Composition-property relationship. European Polymer Journal, 47, 959–972. DOI: 10.1016/j.eurpolymj.2011.01.001. http://dx.doi.org/10.1016/j.eurpolymj.2011.01.00110.1016/j.eurpolymj.2011.01.001Suche in Google Scholar

[28] Špírková, M., Poręba, R., Pavličević, J., Kobera, L., Baldrian, J., & Pekárek, M. (2012). Aliphatic polycarbonate-based polyurethane elastomers and nanocomposites. I. The influence of hard-segment content and macrodiol-constitution on bottom-up self-assembly. Journal of Applied Polymer Science, 126, 1016–1030. DOI: 10.1002/app.36993. http://dx.doi.org/10.1002/app.3699310.1002/app.36993Suche in Google Scholar

[29] Tanaka, H., & Kunimura, M. (2002). Mechanical properties of thermoplastic polyurethanes containing aliphatic polycarbonate soft segments with different chemical structures. Polymer Engineering & Science, 42, 1333–1349. DOI: 10.1002/pen.11035. http://dx.doi.org/10.1002/pen.1103510.1002/pen.11035Suche in Google Scholar

[30] Vojtová, L., Kupka, V., Žídek, J., Wasserbauer, J., Sedláček, P., & Jančář, J. (2012). Biodegradable polyhydroxybutyrate as a polyol for elastomeric polyurethanes. Chemical Papers, 66, 869–874. DOI: 10.2478/s11696-012-0176-9. http://dx.doi.org/10.2478/s11696-012-0176-910.2478/s11696-012-0176-9Suche in Google Scholar

[31] Zhu, G. Q., Wang, F. G., Gao, Q. C., Li, G. C., & Wang, P. (2011). Properties of poly(γ-benzyl L-glutamate) membrane modified by polyurtehane containing carboxyl group. Chemical Papers, 65, 483–489. DOI: 10.2478/s11696-011-0032-3. http://dx.doi.org/10.2478/s11696-011-0032-310.2478/s11696-011-0032-3Suche in Google Scholar

Published Online: 2013-10-30
Published in Print: 2014-2-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Synthesis and characterisation of a novel bi-nuclear copper2+ complex and its application as electrode-modifying agent for simultaneous voltammetric determination of dopamine and ascorbic acid
  2. Synthesis of ethyl-6-aminohexanoate from caprolactam and ethanol in near-critical water
  3. Vanadium dodecylamino phosphate: A novel efficient catalyst for synthesis of polyhydroquinolines
  4. Modelling and experimental validation of enantioseparation of racemic phenylalanine via a hollow fibre-supported liquid membrane
  5. Influence of operating conditions on performance of ceramic membrane used for water treatment
  6. Mercury associated with size-fractionated urban particulate matter: three years of sampling in Prague, Czech Republic
  7. Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes
  8. A new organically templated magnesium sulfate: structure, spectroscopic analysis, and thermal behaviour
  9. Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors
  10. Synthesis and photophysical properties of new Ln(III) (Ln = Eu(III), Gd(III), or Tb(III)) complexes of 1-amidino-O-methylurea
  11. Polycarbonate-based polyurethane elastomers: temperature-dependence of tensile properties
  12. Synthesis of a disulfide functionalized diacetylenic derivative of carbazole as building-block of polymerizable self-assembled monolayers
  13. Properties of poly(lactic acid-co-glycolic acid) film modified by blending with polyurethane
  14. Determination of 10B in lymphoma human cells after boron carrier treatment: comparison of 10BPA and immuno-nanoparticles
  15. Molecular modelling and spectral investigation of some triphenyltetrazolium chloride derivatives
  16. X-ray molecular structure and theoretical study of 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl]benzene
  17. 1,3-Dipolar cycloaddition between substituted phenyl azide and 2,3-dihydrofuran
Heruntergeladen am 5.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0439-0/html?lang=de
Button zum nach oben scrollen