Startseite Properties of poly(lactic acid-co-glycolic acid) film modified by blending with polyurethane
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Properties of poly(lactic acid-co-glycolic acid) film modified by blending with polyurethane

  • Guo-Quan Zhu EMAIL logo , Fa-Gang Wang , Hong-Sheng Tan , Qiao-Chun Gao und Yu-Ying Liu
Veröffentlicht/Copyright: 30. Oktober 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A number of poly(lactic acid-co-glycolic acid)/polyurethane (PLGA/PU) blend films with various PU mole contents were prepared by casting the polymer blend solution in chloroform. The surface morphologies of the PLGA/PU blend films were studied by scanning electron microscopy (SEM). The thermal, mechanical and chemical properties of the PLGA/PU blend films were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile tests and surface contact angle tests. The results revealed that the introduction of PU could markedly modify the properties of PLGA films.

[1] Anderson, J. M., & Miller, K. M. (1984). Biomaterial biocompatibility and the macrophage. Biomaterials, 5, 5–10. DOI: 10.1016/0142-9612(84)90060-7. http://dx.doi.org/10.1016/0142-9612(84)90060-710.1016/0142-9612(84)90060-7Suche in Google Scholar

[2] Angelova, N., & Hunkeler, D. (1999). Rationalizing the design of polymeric biomaterials. Trends in Biotechnology, 17, 409–421. DOI: 10.1016/s0167-7799(99)01356-6. http://dx.doi.org/10.1016/S0167-7799(99)01356-610.1016/S0167-7799(99)01356-6Suche in Google Scholar

[3] Bai, L. Q., Zhu, L. J., Min, S. J., Liu, L., Cai, Y. R., & Yao, J. M. (2008). Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide. Applied Surface Science, 254, 2988–2995. DOI: 10.1016/j.apsusc.2007.10.049. http://dx.doi.org/10.1016/j.apsusc.2007.10.04910.1016/j.apsusc.2007.10.049Suche in Google Scholar

[4] Bittner, B., Witt, C., Mäder, K., & Kissel, T. (1999). Degradation and protein release properties of microspheres prepared from biodegradable poly(lactide-co-glycolide) and ABA triblock copolymers: influence of buffer media on polymer erosion and bovine serum albumin release. Journal of Controlled Release, 60, 297–309. DOI: 10.1016/s0168-3659(99)00085-1. http://dx.doi.org/10.1016/S0168-3659(99)00085-110.1016/S0168-3659(99)00085-1Suche in Google Scholar

[5] Blanco-Príeto, M. J., Besseghir, K., Zerbe, O., Andris, D., Orsolini, P., Heimgartner, F., Merkle, H. P., & Gander, B. (2000). In vitro and in vivo evaluation of a somatostatin analogue released from PLGA microspheres. Journal of Controlled Release, 67, 19–28. DOI: 10.1016/s0168-3659(99)00289-8. http://dx.doi.org/10.1016/S0168-3659(99)00289-810.1016/S0168-3659(99)00289-8Suche in Google Scholar

[6] Cleland, J. L., Johnson, O. L., Putney, S., & Jones, A. J. S. (1997). Recombinant human growth hormone poly(lactic-co-glycolic acid) microsphere formulation development. Advanced Drug Delivery Reviews, 28, 71–84. DOI: 10.1016/s0169-409x(97)00051-3. http://dx.doi.org/10.1016/S0169-409X(97)00051-310.1016/S0169-409X(97)00051-3Suche in Google Scholar

[7] Elbert, D. L., & Hubbell, J. A. (1998). Self-assembly and steric stabilization at heterogeneous, biological surfaces using adsorbing block copolymers. Chemistry and Biology, 5, 177–183. DOI: 10.1016/s1074-5521(98)90062-x. http://dx.doi.org/10.1016/S1074-5521(98)90062-X10.1016/S1074-5521(98)90062-XSuche in Google Scholar

[8] Ganji, F., & Abdekhodaie, M. J. (2010). Chitosan-g-PLGA copolymer as a thermosensitive membrane. Carbohydrate Polymers, 80, 740–746. DOI: 10.1016/j.carbpol.2009.12.021. http://dx.doi.org/10.1016/j.carbpol.2009.12.02110.1016/j.carbpol.2009.12.021Suche in Google Scholar

[9] Göpferich, A., Peter, S. J., Lucke, A., Lu, L., & Mikos, A. G. (1999). Modulation of marrow stromal cell function using poly(d,l-lactic acid)-block-poly(ethylene glycol)-monomethyl ether surfaces. Journal of Biomedical Materials Research Part A, 46, 390–398. DOI: 10.1002/(SICI)1097-4636(19990905)46:3〈390::AID-JBM12〉3.0.CO;2-N. http://dx.doi.org/10.1002/(SICI)1097-4636(19990905)46:3<390::AID-JBM12>3.0.CO;2-N10.1002/(SICI)1097-4636(19990905)46:3<390::AID-JBM12>3.0.CO;2-NSuche in Google Scholar

[10] Harjunalanen, T., & Lahtinen, M. (2003). The effects of altered reaction conditions on the properties of anionic poly(urethane-urea) dispersions and films cast from the dispersions. European Polymer Journal, 39, 817–824. DOI: 10.1016/s0014-3057(02)00279-3. http://dx.doi.org/10.1016/S0014-3057(02)00279-310.1016/S0014-3057(02)00279-3Suche in Google Scholar

[11] Holzer, M., Vogel, V., Mäntele, W., Schwartz, D., Haase, W., & Langer, K. (2009). Physico-chemical characterisation of PLGA nanoparticles after freeze-drying and storage. European Journal of Pharmaceutics and Biopharmaceutics, 72, 428–437. DOI: 10.1016/j.ejpb.2009.02.002. http://dx.doi.org/10.1016/j.ejpb.2009.02.00210.1016/j.ejpb.2009.02.002Suche in Google Scholar

[12] Houchin, M. L., Neuenswander, S. A., & Topp, E. M. (2007). Effect of excipients on PLGA film degradation and the stability of an incorporated peptide. Journal of Controlled Release, 117, 413–420. DOI: 10.1016/j.jconrel.2006.11.023. http://dx.doi.org/10.1016/j.jconrel.2006.11.02310.1016/j.jconrel.2006.11.023Suche in Google Scholar

[13] Ignatius, A. A., & Claes, L. E. (1996). In vitro biocompatibility of bioresorbable polymers: poly(l, dl-lactide) and poly(l-lactide-co-glycolide). Biomaterials, 17, 831–839. DOI: 10.1016/0142-9612(96)81421-9. http://dx.doi.org/10.1016/0142-9612(96)81421-910.1016/0142-9612(96)81421-9Suche in Google Scholar

[14] Jain, R. A. (2000). The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 21, 2475–2490. DOI: 10.1016/s0142-9612(00)00115-0. http://dx.doi.org/10.1016/S0142-9612(00)00115-010.1016/S0142-9612(00)00115-0Suche in Google Scholar

[15] Jeong, J. H., Lim, D. W., Han, D. K., & Park, T. G. (2000). Synthesis, characterization and protein adsorption behaviors of PLGA/PEG di-block co-polymer blend films. Colloids and Surfaces B: Biointerfaces, 18, 371–379. DOI: 10.1016/s0927-7765(99)00162-9. http://dx.doi.org/10.1016/S0927-7765(99)00162-910.1016/S0927-7765(99)00162-9Suche in Google Scholar

[16] Kondo, T., Sawatari, C., Manley, R. S. J., & Gray, D. G. (1994). Characterization of hydrogen bonding in cellulose-synthetic polymer blend systems with regioselectively sub stituted methylcellulose. Macromolecules, 27, 210–215. DOI: 10.1021/ma00079a031. http://dx.doi.org/10.1021/ma00079a03110.1021/ma00079a031Suche in Google Scholar

[17] Langer, R. (1995). 1994 Whitaker lecture: Polymers for drug delivery and tissue engineering. Annals of Biomedical Engineering, 23, 101–111. DOI: 10.1007/bf02368317. http://dx.doi.org/10.1007/BF0236831710.1007/BF02368317Suche in Google Scholar

[18] Lio, K., Minoura, N., & Nagura, M. (1995). Swelling characteristics of a blend hydrogel made of poly(allylbiguanido-co-allylamine) and poly(vinyl alcohol). Polymer, 36, 2579–2583. DOI: 10.1016/0032-3861(95)91204-k. http://dx.doi.org/10.1016/0032-3861(95)91204-K10.1016/0032-3861(95)91204-KSuche in Google Scholar

[19] Loo, S. C. J., Ooi, C. P., & Boey, Y. C. F. (2004). Radiation effects on poly(lactide-co-glycolide) (PLGA) and poly(l-lactide) (PLLA). Polymer Degradation and Stability, 83, 259–265. DOI: 10.1016/s0141-3910(03)00271-4. http://dx.doi.org/10.1016/S0141-3910(03)00271-410.1016/S0141-3910(03)00271-4Suche in Google Scholar

[20] Loo, S. C. J., Ooi, C. P., Wee, S. H. E., & Boey, Y. C. F. (2005). Effect of isothermal annealing on the hydrolytic degradation rate of poly(lactide-co-glycolide) (PLGA). Biomaterials, 26, 2827–2833. DOI: 10.1016/j.biomaterials.2004.08.031. http://dx.doi.org/10.1016/j.biomaterials.2004.05.00110.1016/j.biomaterials.2004.05.001Suche in Google Scholar PubMed

[21] Murakami, H., Kobayashi, M., Takeuchi, H., & Kawashima, Y. (2000). Utilization of poly(dl-lactide-co-glycolide) nanoparticles for preparation of mini-depot tablets by direct compression. Journal of Controlled Release, 67, 29–36. DOI: 10.1016/s0168-3659(99)00288-6. http://dx.doi.org/10.1016/S0168-3659(99)00288-610.1016/S0168-3659(99)00288-6Suche in Google Scholar

[22] Nishio, Y., & Manley, R. S. J. (1988). Cellulose-poly(vinyl alcohol) blends prepared from solutions in N,N-dimethylacetamide-lithium chloride. Macromolecules, 21, 1270–1277. DOI: 10.1021/ma00183a016. http://dx.doi.org/10.1021/ma00183a01610.1021/ma00183a016Suche in Google Scholar

[23] Park, J. S., Park, J. W., & Ruckenstein, E. (2001). Thermal and dynamic mechanical analysis of PVA/MC blend hydogels. Polymer, 42, 4271–4280. DOI: 10.1016/s0032-3861(00)00768-0. http://dx.doi.org/10.1016/S0032-3861(00)00768-010.1016/S0032-3861(00)00768-0Suche in Google Scholar

[24] Park, B. J., Seo, H. J., Kim, J., Kim, H. L., Kim, J. K., Choi, J. B., Han, I., Hyun, S. O., Chung, K. H., & Park, J. C. (2010). Cellular responses of vascular endothelial cells on surface modified polyurethane films grafted electospun PLGA fiber with microwave-induced plasma at atmospheric pressure. Surface & Coatings Technology, 205, s222–s226. DOI: 10.1016/j.surfcoat.2010.07.087. http://dx.doi.org/10.1016/j.surfcoat.2010.07.08710.1016/j.surfcoat.2010.07.087Suche in Google Scholar

[25] Peppas, N. A., Huang, Y., Torres-Lugo, M., Ward, J. H., & Zhang, J. (2000). Physicochemical foundations and structural design of hydrogels in medicine and biology. Annual Review of Biomedical Engineering, 2, 9–29. DOI: 10.1146/annurev.bioeng.2.1.9. http://dx.doi.org/10.1146/annurev.bioeng.2.1.910.1146/annurev.bioeng.2.1.9Suche in Google Scholar

[26] Rowlands, A. S., Lim, S. A., Martin, D., & Cooper-White, J. J. (2007). Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation. Biomaterials, 28, 2109–2121. DOI: 10.1016/j.biomaterials.2006.12.032. http://dx.doi.org/10.1016/j.biomaterials.2006.12.03210.1016/j.biomaterials.2006.12.032Suche in Google Scholar

[27] Sawatari, C., & Kondo, T. (1999). Interchain hydrogen bonds in blend films of poly(vinyl alcohol) and its derivatives with poly(ethylene oxide). Macromolecules, 32, 1949–1955. DOI: 10.1021/ma980900o. http://dx.doi.org/10.1021/ma980900o10.1021/ma980900oSuche in Google Scholar

[28] Schliecker, G., Schmidt, C., Fuchs, S., Wombacher, R., & Kissel, T. (2003). Hydrolytic degradation of poly(lactide-co-glycolide) films: effect of oligomers on degradation rate and crystallinity. International Journal of Pharmaceutics, 266, 39–49. DOI: 10.1016/s0378-5173(03)00379-x. http://dx.doi.org/10.1016/S0378-5173(03)00379-X10.1016/S0378-5173(03)00379-XSuche in Google Scholar

[29] Steele, T. W. J., Huang, C. L., Widjaja, E., Boey, F. Y. C., Loo, J. S. C., & Venkatraman, S. S. (2011). The effect of polyethylene glycol structure on paclitaxel drug release and mechanical properties of PLGA thin films. Acta Biomaterialia, 7, 1973–1983. DOI: 10.1016/j.actbio.2011.02.002. http://dx.doi.org/10.1016/j.actbio.2011.02.00210.1016/j.actbio.2011.02.002Suche in Google Scholar PubMed

[30] Stolnik, S., Dunn, S. E., Garnett, M. C., Davies, M. C., Coombes, A. G. A., Taylor, D. C., Irving, M. P., Purkiss, S. C., Tadros, T. F., Davis, S. S., & Illum, L. (1994). Surface modification of poly (lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Pharmaceutical Research, 11, 1800–1808. DOI: 10.1023 /a:1018931820564. http://dx.doi.org/10.1023/A:101893182056410.1023/A:1018931820564Suche in Google Scholar

[31] Sung, C. S. P., Smith, T. W., & Sung, N. H. (1980). Properties of segmented polyether poly(urethaneureas) based of 2,4-toluene diisocyanate. 2. Infrared and mechanical studies. Macromolecules, 13, 117–121. DOI: 10.1021/ma60073a023. http://dx.doi.org/10.1021/ma60073a02310.1021/ma60073a023Suche in Google Scholar

[32] Tanaka, H., Suzuki, Y., & Yoshino, F. (1999). Synthesis and coating application of waterborne fluoroacrylic-polyurethane composite dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 153, 597–601. DOI: 10.1016/s0927-7757(98)00482-8. http://dx.doi.org/10.1016/S0927-7757(98)00482-810.1016/S0927-7757(98)00482-8Suche in Google Scholar

[33] Thanki, P. N., Dellacherie, E., & Six, J. L. (2006). Surface characteristics of PLA and PLGA films. Applied Surface Science, 253, 2758–2764. DOI: 10.1016/j.apsusc.2006.05.047. http://dx.doi.org/10.1016/j.apsusc.2006.05.04710.1016/j.apsusc.2006.05.047Suche in Google Scholar

[34] Vey, E., Roger, C., Meehan, L., Booth, J., Claybourn, M., Miller, A. F., & Saiani, A. (2008). Degradation mechanism of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution. Polymer Degradation and Stability, 93, 1869–1876. DOI: 10.1016/j.polymdegradstab.2008.07.018. http://dx.doi.org/10.1016/j.polymdegradstab.2008.07.01810.1016/j.polymdegradstab.2008.07.018Suche in Google Scholar

[35] Yoon, S. D., Park, M. H., & Byun, H. S. (2012). Mechanical and water barrier properties of starch/PVA composite films by adding nano-sized poly(methyl methacrylate-coacrylamide) particles. Carbohydrate Polymers, 87, 676–686. DOI: 10.1016/j.carbpol.2011.08.046. http://dx.doi.org/10.1016/j.carbpol.2011.08.04610.1016/j.carbpol.2011.08.046Suche in Google Scholar PubMed

[36] Zhu, G. Q., Wang, F. G., Gao, Q. C., Li, G. C., & Wang, P. (2011). Properties of poly(γ-benzyl l-glutamate) membrane modified by polyurethane containing carboxyl group. Chemical Papers, 65, 483–489. DOI: 10.2478/s11696-011-0032-3. http://dx.doi.org/10.2478/s11696-011-0032-310.2478/s11696-011-0032-3Suche in Google Scholar

[37] Zou, M. X., Wang, S. J., Zhang, Z. C., & Ge, X. W. (2005). Preparation and characterization of polysiloxane-poly(butyl acrylate-styrene) composite latices and their film properties. European Polymer Journal, 41, 2602–2613. DOI: 10.1016/j.eurpolymj.2005.05.038. http://dx.doi.org/10.1016/j.eurpolymj.2005.05.03810.1016/j.eurpolymj.2005.05.038Suche in Google Scholar

Published Online: 2013-10-30
Published in Print: 2014-2-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Synthesis and characterisation of a novel bi-nuclear copper2+ complex and its application as electrode-modifying agent for simultaneous voltammetric determination of dopamine and ascorbic acid
  2. Synthesis of ethyl-6-aminohexanoate from caprolactam and ethanol in near-critical water
  3. Vanadium dodecylamino phosphate: A novel efficient catalyst for synthesis of polyhydroquinolines
  4. Modelling and experimental validation of enantioseparation of racemic phenylalanine via a hollow fibre-supported liquid membrane
  5. Influence of operating conditions on performance of ceramic membrane used for water treatment
  6. Mercury associated with size-fractionated urban particulate matter: three years of sampling in Prague, Czech Republic
  7. Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes
  8. A new organically templated magnesium sulfate: structure, spectroscopic analysis, and thermal behaviour
  9. Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors
  10. Synthesis and photophysical properties of new Ln(III) (Ln = Eu(III), Gd(III), or Tb(III)) complexes of 1-amidino-O-methylurea
  11. Polycarbonate-based polyurethane elastomers: temperature-dependence of tensile properties
  12. Synthesis of a disulfide functionalized diacetylenic derivative of carbazole as building-block of polymerizable self-assembled monolayers
  13. Properties of poly(lactic acid-co-glycolic acid) film modified by blending with polyurethane
  14. Determination of 10B in lymphoma human cells after boron carrier treatment: comparison of 10BPA and immuno-nanoparticles
  15. Molecular modelling and spectral investigation of some triphenyltetrazolium chloride derivatives
  16. X-ray molecular structure and theoretical study of 1,4-bis[2-cyano-2-(o-pyridyl)ethenyl]benzene
  17. 1,3-Dipolar cycloaddition between substituted phenyl azide and 2,3-dihydrofuran
Heruntergeladen am 5.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0438-1/html?lang=de
Button zum nach oben scrollen