Startseite 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris

  • Katarína Kráľová EMAIL logo , František Šeršeň , Věra Klimešová und Karel Waisser
Veröffentlicht/Copyright: 28. September 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The inhibition of the oxygen evolution rate (OER) in Chlorella vulgaris by 2-alkylsulphanyl-4-pyridinecarbothioamides (APCTs; alkyl = methyl up to hexadecyl) was studied. APCTs were found to inhibit photosynthetic electron transport (PET) which resulted in the inhibition of OER in algae. The inhibitory activity of APCTs was highly dependent on the alkyl chain length of the 2-alkylsulphanyl substituent and the corresponding dependence showed a bilinear course with the decyl derivative as being the most active inhibitor. Using EPR spectroscopy, the site of APCT action in the algal photosynthetic apparatus was determined. It was confirmed that APCT interacted mainly with the D. intermediate, i.e. with tyrosine radical (TyrD) occurring at the 161st position in D2 protein which is situated on the donor side of photosystem 2.

[1] Balgavy, P., & Devínsky, F. (1996). Cut-off effects in biological activities of surfactants. Advances in Colloid and Interface Science, 66, 23–63. DOI: 10.1016/0001-8686(96)00295-3. http://dx.doi.org/10.1016/0001-8686(96)00295-310.1016/0001-8686(96)00295-3Suche in Google Scholar

[2] Bartoš, J., Berková, E., & Šetlík, I. (1975). A versatile chamber for gas exchange measurements in suspension of algae and chloroplasts. Photosynthetica, 9, 395–406. Suche in Google Scholar

[3] Chioua, M., Samadi, A., Soriano, E., Lozach, O., Meijer, L., & Marco-Contelles, J. (2009). Synthesis and biological evaluation of 3,6-diamino-1H-pyrazolo[3,4-b]pyridine derivatives as protein kinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 19, 4566–4569. DOI: 10.1016/j.bmcl.2009.06.099. http://dx.doi.org/10.1016/j.bmcl.2009.06.09910.1016/j.bmcl.2009.06.099Suche in Google Scholar

[4] Debus, R. J., Barry, B. A., Babcock, G. T., & McIntosh, L. (1988a). Site-directed mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen-evolving system. Proceedings of the National Academy of Sciences of the United States of America, 85, 427–430. http://dx.doi.org/10.1073/pnas.85.2.42710.1073/pnas.85.2.427Suche in Google Scholar

[5] Debus, R. J., Barry, B. A., Sithole, I., Babcock, G. T., & McIntosh, L. (1988b). Directed mutagenesis indicates that donor to P 680+ in photosystem II is tyrosine-161 of the D1 polypeptide. Biochemistry, 27, 9071–9074. DOI: 10.1021/bi00426a001. http://dx.doi.org/10.1021/bi00426a00110.1021/bi00426a001Suche in Google Scholar

[6] Hoff, A. J. (1979). Applications of ESR in photosynthesis. Physics Reports, 54, 75–200. DOI: 10.1016/0370-1573(79)90016-4. http://dx.doi.org/10.1016/0370-1573(79)90016-410.1016/0370-1573(79)90016-4Suche in Google Scholar

[7] Klimešová, V., Otčenášek, M., & Waisser, K. (1996a). Potential antifungal agents. Synthesis and activity of 2-alkylthiopyridine-4-carbothioamides. European Journal of Medicinal Chemistry, 31, 389–395. DOI: 10.1016/0223-5234(96)89165-3. http://dx.doi.org/10.1016/0223-5234(96)89165-310.1016/0223-5234(96)89165-3Suche in Google Scholar

[8] Klimešová, V., Svoboda, M., Waisser, K., Macháček, M., Buchta, V., & Odlerová, Ž. (1996b). Research on antifungal and antimycobacterial agents. Synthesis and activity of 4-alkylthiopyridine-2-carbothioamides. Archiv der Pharmazie, 329, 438–442. DOI: 10.1002/ardp.19963291003. http://dx.doi.org/10.1002/ardp.1996329100310.1002/ardp.19963291003Suche in Google Scholar

[9] Kráľová, K., Loos, D., Šeršeň F., & Sidóová, E. (1994). QSAR study concerning photosynthesis inhibition in algae and plant chloroplasts by 2-alkylthio-6-R-benzothiazoles. I. 2-Alkylthio-6-aminobenzothiazoles, 3-(2-alkyltio-6-benzothiazolylaminomethyl)-2-benzothiazolinethiones, 3-(2-alkylthio-6-benzothiazolyl-aminomethyl)-6-bromo-2-benzothiazolinones. Chemical Papers, 48, 198–202. Suche in Google Scholar

[10] Kráľová, K., Miletín, M., & Doležal, M. (2001). Inhibition of oxygen evolution rate in freshwater algae Chlorella vulgaris by some anilides of substituted pyridine-4-carboxylic acids. Chemical Papers, 55, 251–253. Suche in Google Scholar

[11] Kráľová, K., Šeršeň, F., Gašparová, R., & Lácová, M. (1998c). Effect of chromone-substituted benzothiazolium halides on photosynthetic processes. Chemical Papers, 52, 776–779. Suche in Google Scholar

[12] Kráľová, K., Šeršeň, F., Klimešová, V., & Waisser, K. (1997). Effect of 2-alkylthio-4-pyridinecarbothiamides on photosynthetic electron transport in spinach chloroplasts. Collection of Czechoslovak Chemical Communications, 62, 516–520. DOI: 10.1135/cccc19970516. http://dx.doi.org/10.1135/cccc1997051610.1135/cccc19970516Suche in Google Scholar

[13] Kráľová, K., Šeršeň, F., & Melník, M. (1998b). Inhibition of photosynthesis in Chlorella vulgaris by Cu(II) complexes with biologically active ligands. Journal of Trace and Microprobe Techniques, 16, 491–500. Suche in Google Scholar

[14] Kráľová, K., Šeršeň, F., Miletín, M., & Hartl, J. (1998a). Inhibition of photosynthetic electron transport by some anilides of 2-alkylpyridine-4-carboxylic acids in spinach chloroplasts. Chemical Papers, 52, 52–55. Suche in Google Scholar

[15] Kráľová, K., Šeršeň, F., & Sidóová, E. (1992). Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chemical Papers, 46, 348–350. Suche in Google Scholar

[16] Krauze, A., Gērmane, S., Eberliņš, O., Šturms, I., Klusā, V., & Duburs, G. (1999). Dervivatives of 3-cyano-6-phenyl-4-(3′-pyridyl)-pyridine-2(1H)-thione and their neurotropic activity. European Journal of Medicinal Chemistry, 34, 301–310. DOI: 10.1016/S0223-5234(99)80081-6. http://dx.doi.org/10.1016/S0223-5234(99)80081-610.1016/S0223-5234(99)80081-6Suche in Google Scholar

[17] Okazaki, K., Maeda, T., Nagamune, H., & Kourai, H. (1997). Antibacterial characteristics of N-alkyl-2-alkylthiopyridinium and N-alkyl-4-alkylthiopyridinium salts. Japanese Journal of Toxicology and Environmental Health, 43, 251–260. http://dx.doi.org/10.1248/jhs1956.43.25110.1248/jhs1956.43.251Suche in Google Scholar

[18] Ren, Q., Mo, W., Gao, L., He, H., & Gu, Y. (2010). Facile synthesis and herbicidal activity of novel multisubstituted pyridine derivatives. Journal of Heterocyclic Chemistry, 47, 171–178. DOI: 10.1002/jhet.296. 10.1002/jhet.296Suche in Google Scholar

[19] Svensson, B., Vass, I., & Styring, S. (1991). Sequence analysis of the D1 and D2 reaction center proteins of photosystem II. Zeitschrift für Naturforschung C, 46c, 765–776. 10.1515/znc-1991-9-1008Suche in Google Scholar PubMed

[20] Waisser, K., Klimešová, V., & Buchta, V. (1996a). New groups of potential antifungal agents: 2-Alkylthio-4-pyridinecarbothioamides. Folia Pharmaceutica Universitatis Carolinae, 20, 53–57. Suche in Google Scholar

[21] Waisser, K., Klimešová, V., & Odlerová, Ž. (1996b). Relationships between the chemical structure of substances and their antimycobacterial activity to atypical strains. VII. 2-Alkylthio-4-pyridinecarbothioamides. Folia Pharmaceutica Universitatis Carolinae, 20, 59–62. Suche in Google Scholar

Published Online: 2011-9-28
Published in Print: 2011-12-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
  2. Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
  3. Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
  4. Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
  5. Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
  6. Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
  7. Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
  8. Extraction of phytosterols from tall oil soap using selected organic solvents
  9. Dynamic simulations of waste water treatment plant operation
  10. Influence of recycling and temperature on the swelling ability of paper
  11. Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
  12. Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
  13. Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
  14. Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
  15. Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
  16. Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
  17. DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
  18. Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
  19. Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
  20. A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
  21. Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
  22. 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0082-6/pdf
Button zum nach oben scrollen