Abstract
A number of studies and works in drug delivery literature are focused on the understanding and modelling of transport phenomena, the pivotal point of a good scaffold design for tissue engineering. Accurate knowledge of the diffusion coefficient of an active drug plays a key role in the analysis, prediction of their kinetics and formulation of efficient drug delivery systems. In this work, the kinetics of the release of methylprednisolone from agar-Carbomer hydrogel were studied taking into consideration the different drug concentrations and clearances typically achieved in in vitro or in vivo tests. Starting from the experiments it is possible to model the transport phenomenon and to calculate the diffusion coefficient through the hydrogel matrix.
[1] Alexis, F. (2005). Factors affecting the degradation and drugrelease mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)]. Polymer International, 54, 36–46. DOI: 10.1002/pi.1697. http://dx.doi.org/10.1002/pi.169710.1002/pi.1697Suche in Google Scholar
[2] Arosio, P., Xie, D., Wu, H., Braun, L., & Morbidelli, M. (2010). Effect of primary particle morphology on the structure of gels formed in intense turbulent shear. Langmuir, 26, 6643–6649. DOI 10.1021/La9039754. http://dx.doi.org/10.1021/la903975410.1021/la9039754Suche in Google Scholar
[3] Badylak, S. F., & Nerem, R. M. (2010). Progress in tissue engineering and regenerative medicine. Proceedings of the National Academy of Sciences of the United States of America, 107, 3285–3286. DOI: 10.1073/pnas.1000256107. http://dx.doi.org/10.1073/pnas.100025610710.1073/pnas.1000256107Suche in Google Scholar
[4] Baumann, M. D., Kang, C. E., Stanwick, J. C., Wang, Y., Kim, H., Lapitsky, Y., & Shoichet, M. S. (2009). An injectable drug delivery platform for sustained combination therapy. Journal of Controlled Release, 138, 205–213. DOI: 10.1016/j.jconrel.2009.05.009. http://dx.doi.org/10.1016/j.jconrel.2009.05.00910.1016/j.jconrel.2009.05.009Suche in Google Scholar
[5] Bracken, M. B., Shepard, M. J., Collins, W. F., Holford, T. R., Young, W., Baskin, D. S., Eisenberg, H. M., Flamm, E., Leo-Summers, L., Maroon, J., Marshall, L. F., Perot, P. L., Jr., Piepmeier, J., Sonstag, V. K. H., Wagner, F. C., Wilberger, J. E., & Winn, H. R. (1990). A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. New England Journal of Medicine, 322, 1405–1411. http://dx.doi.org/10.1056/NEJM19900517322200110.1056/NEJM199005173222001Suche in Google Scholar
[6] Bracken, M. B., Shepard, M. J., Holford, T. R., Leo-Summers, L., Aldrich, E. F., Fazl, M., Fehlings, M., Herr, D. L., Hitchon, P. W., Marshall, L. F., Nockels, R. P., Pascale, V., Perot, P. L., Jr., Piepmeier, J., Sonntag, V. K. H., Wagner, F., Wilberger, J. E., Winn, H. R., & Young, W. (1997). Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. The Journal of the American Medical Association, 277, 1597–1604. DOI: 10.1001/jama.1997.03540440031029. http://dx.doi.org/10.1001/jama.277.20.159710.1001/jama.1997.03540440031029Suche in Google Scholar
[7] Cao, K., Huang, L., Liu, J., An, H., Shu, Y., & Han, Z. (2010). Inhibitory effects of high-dose methylprednisolone on bacterial translocation from gut and endotoxin release following acute spinal cord injury-induced paraplegia in rats. Neural Regeneration Research, 5, 456–460. DOI: 10.3969/j.issn.1673-5374.2010.06.009 Suche in Google Scholar
[8] Claußen, S., Janich, M., & Neubert, R. (2003). Light scattering investigations on freeze-dried glucocorticoids in aqueous solution. International Journal of Pharmaceutics, 252, 267–270. DOI: 10.1016/S0378-5173(02)00600-2. http://dx.doi.org/10.1016/S0378-5173(02)00600-210.1016/S0378-5173(02)00600-2Suche in Google Scholar
[9] Crank, J. (1975). The mathematics of diffusion. Oxford, UK: Clarendon Press. Suche in Google Scholar
[10] Falk, B., Garramone, S., & Shivkumar, S. (2004). Diffusion coefficient of paracetamol in a chitosan hydrogel. Materials Let ters, 58, 3261–3265. DOI: 10.1016/j.matlet.2004.05.072. http://dx.doi.org/10.1016/j.matlet.2004.05.07210.1016/j.matlet.2004.05.072Suche in Google Scholar
[11] Hejčl, A., Šedý, J., Kapcalová, M., Toro, D. A., Amemori, T., Lesný, P., Likavčanová-Mašínová, K., Krumbholcová, E., Přádný, M., Michálek, J., Burian, M., Hájek, M., Jendelová, P., & Syková, E. (2010). HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells and Development, 19, 1535–1546. DOI: 10.1089/scd.2009.0378. http://dx.doi.org/10.1089/scd.2009.037810.1089/scd.2009.0378Suche in Google Scholar PubMed
[12] Johansson, L., Skantze, U., & Loefroth, J. E. (1991). Diffusion and interaction in gels and solutions. 2. Experimental results on the obstruction effect. Macromolecules, 24, 6019–6023. DOI: 10.1021/ma00022a018. http://dx.doi.org/10.1021/ma00022a01810.1021/ma00022a018Suche in Google Scholar
[13] Katz, J. S., & Burdick, J. A. (2009). Hydrogel mediated delivery of trophic factors for neural repair. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1, 128–139. DOI: 10.1002/wnan.010. http://dx.doi.org/10.1002/wnan.10Suche in Google Scholar
[14] Kim, Y.-T., Caldwell, J.-M., & Bellamkonda, R. V. (2009). Nanoparticle-mediated local delivery of methylprednisolone after spinal cord injury. Biomaterials, 30, 2582–2590. DOI: 10.1016/j.biomaterials.2008.12.077. http://dx.doi.org/10.1016/j.biomaterials.2008.12.07710.1016/j.biomaterials.2008.12.077Suche in Google Scholar PubMed PubMed Central
[15] Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260(5110), 920–926. DOI: 10.1126/science.8493529. http://dx.doi.org/10.1126/science.849352910.1126/science.8493529Suche in Google Scholar PubMed
[16] Lanza, R. P., Langer, R., & Vacanti, J. (2000). Principles of tissue engineering (2nd ed.). Academic Press. Suche in Google Scholar
[17] Lin, C. C., & Metters, A. T. (2006). Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews, 58, 1379–1408. DOI: 10.1016/j.addr.2006.09.004. http://dx.doi.org/10.1016/j.addr.2006.09.00410.1016/j.addr.2006.09.004Suche in Google Scholar PubMed
[18] Loh, X. J., Peh, P., Liao, S., Sng, C., & Li, J. (2010). Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. Journal of Controlled Release, 143, 175–182. DOI: 10.1016/j.jconrel.2009.12.030. http://dx.doi.org/10.1016/j.jconrel.2009.12.03010.1016/j.jconrel.2009.12.030Suche in Google Scholar PubMed
[19] Mouriño, V., & Boccaccini, A. R. (2010). Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. Journal of the Royal Society Interface, 7, 209–227. DOI: 10.1098/rsif.2009.0379. http://dx.doi.org/10.1098/rsif.2009.037910.1098/rsif.2009.0379Suche in Google Scholar PubMed PubMed Central
[20] Perale, G., Arosio, P., Moscatelli, D., Barri, V., Müller, M., Maccagnan, S., & Masi, M. (2009). A new model of resorbable device degradation and drug release: Transient 1-dimension diffusional model. Journal of Controlled Release, 136, 196–205. DOI: 10.1016/j.jconrel.2009.02.014 http://dx.doi.org/10.1016/j.jconrel.2009.02.01410.1016/j.jconrel.2009.02.014Suche in Google Scholar PubMed
[21] Perale, G., Casalini, T., Barri, V., Müller, M., Maccagnan, S., & Masi, M. (2010). Lidocaine release from polycaprolactone threads. Journal of Applied Polymer Science, 117, 3610–3614. DOI: 10.1002/app.32262. 10.1002/app.32262Suche in Google Scholar
[22] Perale, G., Giordano, C., Bianco, F., Rossi, F., Tunesi, M., Daniele, F., Crivelli, F., Matteoli, M., & Masi, M. (2011a). Hydrogel for cell housing in the brain and in the spinal cord. International Journal of Artificial Organs, 34, 295–303. DOI: 10.5301/IJAO.2011.6488. http://dx.doi.org/10.5301/IJAO.2011.648810.5301/IJAO.2011.6488Suche in Google Scholar PubMed
[23] Perale, G., Rossi, F., Sundstrom, E., Bacchiega, S., Masi, M., Forloni, G., & Veglianese, P. (2011b). Hydrogels in spinal cord injury repair strategies. ACS Chemical Neuroscience, 2, 336–345. DOI: 10.1021/cn200030w. http://dx.doi.org/10.1021/cn200030w10.1021/cn200030wSuche in Google Scholar PubMed PubMed Central
[24] Perale, G., Veglianese, P., Rossi, F., Peviani, M., Santoro, M., Llupi, D., Micotti, E., Forloni, G., & Masi, M. (2011c). In situ agar-carbomer hydrogel polycondensation: A chemical approach to regenerative medicine. Materials Letters, 65, 1688–1692. DOI: 10.1016/j.matlet.2011.02.036. http://dx.doi.org/10.1016/j.matlet.2011.02.03610.1016/j.matlet.2011.02.036Suche in Google Scholar
[25] Rossi, F., Chatzistavrou, X., Perale, G., & Boccaccini, A. R. (2011). Synthesis and degradation of agar-carbomer based hydrogels for tissue engineering applications. Journal of Applied Polymer Science. (in press) Suche in Google Scholar
[26] Rossi, F., Perale, G., & Masi, M. (2010). Biological buffered saline solution as solvent in agar-carbomer hydrogel synthesis. Chemical Papers, 64, 573–578. DOI: 10.2478/s11696-010-0052-4. http://dx.doi.org/10.2478/s11696-010-0052-410.2478/s11696-010-0052-4Suche in Google Scholar
[27] Sakurada, K., McDonald, F. M., & Shimada, F. (2008). Regenerative medicine and stem cell based drug discovery. Angewandte Chemie-International Edition, 47, 5718–5738. DOI: 10.1002/anie.200700724. http://dx.doi.org/10.1002/anie.20070072410.1002/anie.200700724Suche in Google Scholar
[28] Sant, S., Thommes, M., & Hildgen, P. (2008). Microporous structure and drug release kinetics of polymeric nanoparticles. Langmuir, 24, 280–287. DOI: 10.1021/la702244w. http://dx.doi.org/10.1021/la702244w10.1021/la702244wSuche in Google Scholar
[29] Santoro, M., Marchetti, P., Rossi, F., Perale, G., Castiglione, F., Mele, A., & Masi, M. (2011). A smart approach to evaluate drug diffusivity in injectable agar-carbomer hydrogels for drug delivery. Journal of Physical Chemistry B, 115, 2503–2510. DOI: 10.1021/jp1111394. http://dx.doi.org/10.1021/jp111139410.1021/jp1111394Suche in Google Scholar
[30] Shoichet, M. S. (2010). Polymer scaffolds for biomaterials applications. Macromolecules, 43, 581–591. DOI: 10.1021/ma901530r. http://dx.doi.org/10.1021/ma901530r10.1021/ma901530rSuche in Google Scholar
[31] Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A., & Peppas, N. A. (2009). Hydrogels in regenerative medicine. Advanced Materials, 21, 3307–3329. DOI: 10.1002/adma.200802106. http://dx.doi.org/10.1002/adma.20080210610.1002/adma.200802106Suche in Google Scholar
[32] Stella, V. J., Lee, H. K., & Thompson, D. O. (1995). The effect of SBE4-β-cd on i.v. methylprednisolone pharmacokinetics in rats: Comparison to a co-solvent solution and two watersoluble prodrugs. International Journal of Pharmaceutics, 120, 189–195. DOI: 10.1016/0378-5173(94)00404-S. http://dx.doi.org/10.1016/0378-5173(94)00404-S10.1016/0378-5173(94)00404-SSuche in Google Scholar
[33] Tan, H., Ramirez, C. M., Miljkovic, N., Li, H., Rubin, J. P., & Marra, K. G. (2009). Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials, 30, 6844–6853. DOI: 10.1016/J.Biomaterials.2009.08.058. http://dx.doi.org/10.1016/j.biomaterials.2009.08.05810.1016/j.biomaterials.2009.08.058Suche in Google Scholar PubMed PubMed Central
[34] Tang, Y., Zhao, Y., Li, Y., & Du, Y. (2010). A thermosensitive chitosan/poly(vinyl alcohol) hydrogel containing nanoparticles for drug delivery. Polymer Bulletin, 64, 791–804. DOI: 10.1007/s00289-009-0214-0. http://dx.doi.org/10.1007/s00289-009-0214-010.1007/s00289-009-0214-0Suche in Google Scholar
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
- Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
- Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
- Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
- Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
- Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
- Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
- Extraction of phytosterols from tall oil soap using selected organic solvents
- Dynamic simulations of waste water treatment plant operation
- Influence of recycling and temperature on the swelling ability of paper
- Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
- Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
- Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
- Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
- Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
- Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
- DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
- Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
- Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
- A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
- Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
- 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris
Artikel in diesem Heft
- Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
- Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
- Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
- Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
- Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
- Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
- Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
- Extraction of phytosterols from tall oil soap using selected organic solvents
- Dynamic simulations of waste water treatment plant operation
- Influence of recycling and temperature on the swelling ability of paper
- Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
- Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
- Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
- Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
- Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
- Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
- DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
- Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
- Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
- A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
- Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
- 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris