Home Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
Article
Licensed
Unlicensed Requires Authentication

Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis

  • Irina Sapurina EMAIL logo and Jaroslav Stejskal
Published/Copyright: August 25, 2009
Become an author with De Gruyter Brill

Abstract

Multi-wall carbon nanotubes were coated with a conducting polymer, polyaniline phosphotungstate. Such composite structures have mixed electronic and proton conductivity, high surface area and porosity. These materials were decorated with catalytically-active noble metals — Pt, Pd, and Rh. Metal nanoparticles were uniformly distributed in the polymer matrix. Such ternary composites can be considered as electrode materials in sensors, electrolysers, supercapacitors, and especially in low-temperature fuel cells with a proton-conducting polymer membrane.

[1] Andreev, V. N. (2006). Electrochemical behavior of singlecarbon organic compounds on a composite Nafion-polyaniline-palladium particle electrode in acid solutions. Russian Journal of Electrochemistry, 42, 98–101. DOI: 10.1134/S1023193506010150. http://dx.doi.org/10.1134/S102319350601015010.1134/S1023193506010150Search in Google Scholar

[2] Ayad, M. M., Zaki, E. A., & Stejskal, J. (2007). Determination of the dopant weight fraction in polyaniline films using quartz-crystal microbalance. Thin Solid Films, 515, 8381–8385. DOI: 10.1016/j.tsf.2007.05.057. http://dx.doi.org/10.1016/j.tsf.2007.05.05710.1016/j.tsf.2007.05.057Search in Google Scholar

[3] Bialek, B. (2006). Computational studies of the interactions between emeraldine and palladium atom. Surface Science, 600, 1679–1683. DOI: 10.1016/j.susc.2005.12.059. http://dx.doi.org/10.1016/j.susc.2005.12.05910.1016/j.susc.2005.12.059Search in Google Scholar

[4] Blinova, N. V., Sapurina, I., Klimovič, J., & Stejskal, J. (2005). The chemical and colloidal stability of polyaniline dispersions. Polymer Degradation and Stability, 88, 428–434. DOI: 10.1016/j.polymdegradstab.2004.11.014. http://dx.doi.org/10.1016/j.polymdegradstab.2004.11.01410.1016/j.polymdegradstab.2004.11.014Search in Google Scholar

[5] Blinova, N. V., Stejskal, J., Trchová, M., & Prokeš, J. (2006). Polyaniline prepared in solutions of phosphoric acid: Powders, thin films, and colloidal dispersions. Polymer, 47, 42–48. DOI: 10.1016/j.polymer.2005.10.145. http://dx.doi.org/10.1016/j.polymer.2005.10.14510.1016/j.polymer.2005.10.145Search in Google Scholar

[6] Brožová, L., Holler, P., Kovářová, J., Stejskal, J., & Trchová M. (2008). The stability of polyaniline in strongly alkaline or acidic aqueous media. Polymer Degradation and Stability, 93, 592–600. DOI: 10.1016/polymdegradstab.2008.01.012. http://dx.doi.org/10.1016/j.polymdegradstab.2008.01.01210.1016/j.polymdegradstab.2008.01.012Search in Google Scholar

[7] Colomban, P., & Tomkinson, J. (1997). Novel forms of hydrogen in solids: The ‘ionic’ proton and the ‘quasi-free’ proton. Solid State Ionics, 97, 123–134. DOI: 10.1016/S0167-2738(97)00046-5. http://dx.doi.org/10.1016/S0167-2738(97)00046-510.1016/S0167-2738(97)00046-5Search in Google Scholar

[8] Costamagna, P., & Srinivasan, S. (2001a). Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects. Journal of Power Sources, 102, 242–252. DOI: 10.1016/S0378-7753(01)00807-2. http://dx.doi.org/10.1016/S0378-7753(01)00807-210.1016/S0378-7753(01)00807-2Search in Google Scholar

[9] Costamagna, P., & Srinivasan, S. (2001b). Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects. Journal of Power Sources, 102, 253–269. DOI: 10.1016/S0378-7753(01)00808-4. http://dx.doi.org/10.1016/S0378-7753(01)00808-410.1016/S0378-7753(01)00808-4Search in Google Scholar

[10] Coutinho, D., Yang, Z. W., Ferraris, J. P., & Balkus, K. J., Jr. (2005). Proton conducting polyaniline molecular sieve composites. Micropororous and Mesoporous Materials, 81, 321–332. DOI: 10.1016/j.micromeso.2005.02.014. http://dx.doi.org/10.1016/j.micromeso.2005.02.01410.1016/j.micromeso.2005.02.014Search in Google Scholar

[11] Du, Y., Li, J., & Yang, X. (2008). Polyaniline as nonmetal catalyst for styrene synthesis by oxidative dehydrogenation of ethylbenzene. Catalysis Communication, 9, 2331–2333. DOI:10.1016/j.catcom.2008.05.028. http://dx.doi.org/10.1016/j.catcom.2008.05.02810.1016/j.catcom.2008.05.028Search in Google Scholar

[12] Gajendran, P., Vijayanand, S., & Saraswathi, R. (2007). Investigation of oxygen reduction at platinum loaded poly(ophenylenediamine) electrode in acid medium. Journal of Electroanalytical Chemistry, 601, 132–138. DOI: 10.1016/j.jelechem.2006.10.038. http://dx.doi.org/10.1016/j.jelechem.2006.10.03810.1016/j.jelechem.2006.10.038Search in Google Scholar

[13] Gharibi, H., Zhiani, M., Mirzaie, R. A., Kheirmand, M., Entezami, A. A., Kakaei, K., & Javaheri, M. (2006). Investigation of polyaniline impregnation on the performance of gas diffusion electrode (GDE) in PEMFC using binary of Nafion and polyaniline nanofiber. Journal of Power Sources, 157, 703–708. DOI: 10.1016/j.jpowsour.2005.11.044. http://dx.doi.org/10.1016/j.jpowsour.2005.11.04410.1016/j.jpowsour.2005.11.044Search in Google Scholar

[14] Grossiord, N., Loos, J., Regev, O., & Koning, C. E. (2006). Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chemistry of Materials, 18, 1089–1099. DOI: 10.1021/cm051881h. http://dx.doi.org/10.1021/cm051881h10.1021/cm051881hSearch in Google Scholar

[15] Grzeszczuk, M., & Poks, P. (2000). The HER performance of colloidal Pt nanoparticles incorporated in polyaniline. Electrochimica Acta, 45, 4171–4177. DOI: 10.1016/S0013-4686(00)00551-X. http://dx.doi.org/10.1016/S0013-4686(00)00551-X10.1016/S0013-4686(00)00551-XSearch in Google Scholar

[16] Hui, D., Alexandrescu, R., Chipara, M., Morjan, I., Aldica, Gh., Chipara, M. D., & Lau, K. T. (2004). Impedance spectroscopy studies on doped polyanilines. Journal of Optoelectronics and Advanced Materials, 6, 817–824. Search in Google Scholar

[17] Jurevičiūtė, I., Brazdžiuvienė, K., Bernotaitė, L., Šalkus, B., & Malinauskas, A. (2005). Polyaniline-modified electrode as an amperometric ascorbate sensor. Sensors and Actuators B: Chemical, 107, 716–721 DOI: 10.1016/j.snb.2004.11.075. http://dx.doi.org/10.1016/j.snb.2004.11.07510.1016/j.snb.2004.11.075Search in Google Scholar

[18] Komarneni, S., Li, D., Newalkar, B., Katsuki, H., & Bhalla, A. S. (2002). Microwave-polyol process for Pt and Ag nanoparticles. Langmuir, 18, 5959–5962. DOI: 10.1021/la025741n. http://dx.doi.org/10.1021/la025741n10.1021/la025741nSearch in Google Scholar

[19] Kompan, M. E., Sapurina, I. Yu., & Stejskal, J. (2006). Overcoming the low-dimension crisis in the active zone of fuel cells. Technical Physics Letters, 32, 213–216. DOI: 10.1134/S1063785006030114. http://dx.doi.org/10.1134/S106378500603011410.1134/S1063785006030114Search in Google Scholar

[20] Kong, L.-B., Zhang, J., An, J.-J., Luo, Y.-C., & Kang, L. (2008). MWNTs/PANI composite materials prepared by insitu chemical oxidative polymerization for supercapacitor electrode. Journal of Materials Science, 43, 3664–3669. DOI: 10.1007/s10853-008-2586-1. http://dx.doi.org/10.1007/s10853-008-2586-110.1007/s10853-008-2586-1Search in Google Scholar

[21] Konyushenko, E. N., Kazantseva, N. E., Stejskal, J., Trchová, M., Kovářová, J., Sapurina, I., Tomishko, M. M., Demicheva, O. V., & Prokeš, J. (2008). Ferromagnetic behaviour of polyaniline-coated multi-wall carbon nanotubes containing nickel nanoparticles. Journal of Magnetism and Magnetic Materials, 320, 231–240. DOI: 10.1016/j.jmmm.2007.05.036. http://dx.doi.org/10.1016/j.jmmm.2007.05.03610.1016/j.jmmm.2007.05.036Search in Google Scholar

[22] Konyushenko, E. N., Stejskal, J., Trchová, M., Hradil, J., Kovářová, J., Prokeš, J., Cieslar, M., Hwang, J.-Y., Chen, K.-H., & Sapurina, I. (2006). Multi-wall carbon nanotubes coated with polyaniline. Polymer, 47, 5715–5723. DOI: 10.1016/j.polymer.2006.05.059. http://dx.doi.org/10.1016/j.polymer.2006.05.05910.1016/j.polymer.2006.05.059Search in Google Scholar

[23] Lange, U., Roznyatovskaya, N. V., & Mirsky, V. M. (2008). Conducting polymers in chemical sensors and arrays. Analytica Chimica Acta, 614, 1–26. DOI: 10.1016/j.aca.2008.02.068. http://dx.doi.org/10.1016/j.aca.2008.02.06810.1016/j.aca.2008.02.068Search in Google Scholar PubMed

[24] Lee, K.-P., Gopalan, A. I., Santhosh, P., Lee, S. H., & Nho, Y. C. (2007). Gamma radiation induced distribution of gold nanoparticles into carbon nanotube-polyaniline composite. Composites Science and Technology, 67, 811–816. DOI: 10.1016/j.compscitech.2005.12.030. http://dx.doi.org/10.1016/j.compscitech.2005.12.03010.1016/j.compscitech.2005.12.030Search in Google Scholar

[25] Li, J., Liang, Y., Liao, Q., Zhu, X., & Tian, X. (2009). Comparison of the electrocatalytic performance of PtRu nanoparticles supported on multi-walled carbon nanotubes with different length and diameters. Electrochimica Acta, 54, 1277–1285. DOI: 10.1016/j.electacta.2008.09.005. http://dx.doi.org/10.1016/j.electacta.2008.09.00510.1016/j.electacta.2008.09.005Search in Google Scholar

[26] Li, Y., Wang, H., Cao, X., Yuan, M., & Yang, M. (2008). A composite of polyelectrolyte-grafted multi-wall carbon nanotubes and in situ polymerized polyaniline for the detection of low concentration triethylamine vapor. Nanotechnology, 19, 015503. DOI: 10.1088/0957-4484/19/01/015503. 10.1088/0957-4484/19/01/015503Search in Google Scholar PubMed

[27] Mokrane, S., Makhloufi, L., & Alonso-Vante, N. (2008). Electrochemistry of platinum nanoparticles supported in polypyrrole (PPy)/C composite materials. Journal of Solid State Electrochemistry, 12, 569–574. DOI: 10.1007/s10008-007-0398-x. http://dx.doi.org/10.1007/s10008-007-0398-x10.1007/s10008-007-0398-xSearch in Google Scholar

[28] Nagashree, K. L., & Ahmed, M. F. (2008). Electrocatalytic oxidation of methanol on Pt modified polyaniline in alkaline medium. Synthetic Metals, 158, 610–616. DOI: 10.1016/j.synthmet.2008.04.006. http://dx.doi.org/10.1016/j.synthmet.2008.04.00610.1016/j.synthmet.2008.04.006Search in Google Scholar

[29] Nechitailov, A. A., Astrova, E. V., Goryachev, D. N., Zvonareva, T. K., Ivanov-Omskii, V. I., Remenyuk, A. D., Sapurina, I. Yu., Sreseli, O. M., & Tolmachev, V. A. (2007). Catalytic layers for fuel cells based on polyaniline and α-C{Pt} composite obtained by magnetron sputtering. Technical Physical Letters, 33, 545–547. DOI: 10.1134/S1063785007070024. http://dx.doi.org/10.1134/S106378500707002410.1134/S1063785007070024Search in Google Scholar

[30] Palaniappan, S., & John, A. (2008). Conjugated polymers as heterogeneous catalyst in organic synthesis. Current Organic Chemistry, 12, 98–117. http://dx.doi.org/10.2174/13852720878333003710.2174/138527208783330037Search in Google Scholar

[31] Pei, H., Hong, L., & Lee, J. Y. (2008). Effects of polyaniline chain structures on proton conduction in a PEM host matrix. Journal of Membrane Science, 307, 126–135. DOI: 10.1016/j.memsci.2007.09.025. http://dx.doi.org/10.1016/j.memsci.2007.09.02510.1016/j.memsci.2007.09.025Search in Google Scholar

[32] Rahman, Md. A., Kumar, P., Park, D.-S., & Shim, Y.-B. (2008). Electrochemical sensors based on organic conjugated polymers. Sensors, 8, 118–141. DOI: 10.3390/s8010118. http://dx.doi.org/10.3390/s801011810.3390/s8010118Search in Google Scholar

[33] Ramanavičius, A., Ramanavičien, A., & Malinauskas, A. (2006). Electrochemical sensors based on conducting polymer-polypyrrole. Electrochimica Acta, 51, 6025–6037. DOI: 10.1016/j.electacta.2005.11.052. http://dx.doi.org/10.1016/j.electacta.2005.11.05210.1016/j.electacta.2005.11.052Search in Google Scholar

[34] Reddy, A. L. M., Rajalakshmi, N., & Ramaprabhu, S. (2008). Cobalt-polypyrrole-multiwalled carbon nanotube catalysts for hydrogen and alcohol fuel cells. Carbon, 46, 2–11. DOI: 10.1016/j.carbon.2007.10.021. 10.1016/j.carbon.2007.10.021Search in Google Scholar

[35] Sapurina, I. Yu., Kompan, M. E., Zabrodskii, A. G., Stejskal, J., & Trchová, M. (2007). Nanocomposites with mixed electronic and protonic conduction for electrocatalysis. Russian Journal of Electrochemistry, 43, 528–536. DOI: 10.1134/S1023193507050059. http://dx.doi.org/10.1134/S102319350705005910.1134/S1023193507050059Search in Google Scholar

[36] Sapurina, I., & Stejskal, J. (2008). The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International, 57, 1295–1325. DOI: 10.1002/pi.2476. http://dx.doi.org/10.1002/pi.247610.1002/pi.2476Search in Google Scholar

[37] Selvaraj, V., Alagar, M., & Kumar, K. S. (2007). Synthesis and characterization of metal nanoparticles-decorated PPY-CNT composite and their electrocatalytic oxidation of formic acid and formaldehyde for fuel cell applications. Applied Catalysis B: Environmental, 75, 129–138. DOI: 10.1016/j.apcatb.2007.03.012. http://dx.doi.org/10.1016/j.apcatb.2007.03.01210.1016/j.apcatb.2007.03.012Search in Google Scholar

[38] Shi, J., Guo, D.-J., Wang, Z., & Li, H.-L. (2005). Electrocatalytic oxidation of formic acid on platinum particles dispersed in SWNT/PANI composite film. Journal of Solid State Electrochemistry, 9, 634–638. DOI: 10.1007/s10008-004-0624-8. http://dx.doi.org/10.1007/s10008-004-0624-810.1007/s10008-004-0624-8Search in Google Scholar

[39] Skotheim, T. A., Elsenbaumer, R. L., & Reynolds, J. R. (Eds.) (1998). Handbook of conducting polymers (2nd Ed.). New York: Marcel Dekker. Search in Google Scholar

[40] Stejskal, J., Hlavatá, D., Holler, P., Trchová, M., Prokeš, J., & Sapurina, I. (2004). Polyaniline prepared in the presence of various acids: a conductivity study. Polymer International, 53, 294–300. DOI: 10.1002/pi.1406. http://dx.doi.org/10.1002/pi.140610.1002/pi.1406Search in Google Scholar

[41] Stejskal, J., Kratochvíl, P., & Špírková, M. (1995). Accelerating effect of some cation radicals on the polymerization of aniline. Polymer, 36, 4135–4140. DOI: 10.1016/0032-3861(95)90996-F. http://dx.doi.org/10.1016/0032-3861(95)90996-F10.1016/0032-3861(95)90996-FSearch in Google Scholar

[42] Stejskal, J., Trchová, M., Holler, P., Sapurina, I., & Prokeš, J. (2005). The influence of tungsten compounds on the synthesis and properties of polyaniline. Polymer International, 54, 1606–1612. DOI: 10.1002/pi.1888. http://dx.doi.org/10.1002/pi.188810.1002/pi.1888Search in Google Scholar

[43] Stejskal, J., Prokeš, J., & Trchová, M. (2008a). Reprotonation of polyaniline: A route to various conducting polymer materials. Reactive & Functional Polymers, 68, 1355–1361. DOI: 10.1016/j.reactfunctpolym.2008.06.012. http://dx.doi.org/10.1016/j.reactfunctpolym.2008.06.01210.1016/j.reactfunctpolym.2008.06.012Search in Google Scholar

[44] Stejskal, J., Trchová, M., Kovářová, J., Prokeš, J., & Omastová, M. (2008b). Polyaniline-coated cellulose fibers decorated with silver nanoparticles. Chemical Papers, 62, 181–186. DOI: 10.2478/s11696-008-0009-z. http://dx.doi.org/10.2478/s11696-008-0009-z10.2478/s11696-008-0009-zSearch in Google Scholar

[45] Stejskal, J., Trchová, M., Brožová, L., & Prokeš, J. (2009a). Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites. Chemical Papers, 63, 77–83. DOI: 10.2478/s11696-008-0086-z. http://dx.doi.org/10.2478/s11696-008-0086-z10.2478/s11696-008-0086-zSearch in Google Scholar

[46] Stejskal, J., Bogomolova, O. E., Blinova, N. V., Trchová, M., Šeděnkovš, J., & Sapurina, I. (2009b). Mixed electron and proton conductivity of polyaniline films in aqueous solutions of acids: beyond the 1000 S cm−1 limit. Polymer International, 58, 872–879. DOI: 10.1002/pi.2605. http://dx.doi.org/10.1002/pi.260510.1002/pi.2605Search in Google Scholar

[47] Taylor, A. D., Michel, M., Sekol, R. C., Kizuka, J. M., Kotov, N. A., & Thompson, L. T. (2008). Fuel cell membrane electrode assemblies fabricated by layer-by-layer electrostatic self-assembly techniques. Advances Functional Materials, 18, 3003–3009. DOI: 10.1002/adfm.200701516. http://dx.doi.org/10.1002/adfm.20070151610.1002/adfm.200701516Search in Google Scholar

[48] Trchová, M., Matějka, P., Brodinová, J., Kalendová, A., Prokeš, J., & Stejskal, J. (2006). Structural and conductivity changes during the pyrolysis of polyaniline base. Polymer Degradation and Stability, 91, 114–121. DOI: 10.1016/j.polymdegradstab.2005.04.022. http://dx.doi.org/10.1016/j.polymdegradstab.2005.04.02210.1016/j.polymdegradstab.2005.04.022Search in Google Scholar

[49] Virji, S., Kaner, R. B., & Weiller, B. H. (2006). Hydrogen sensors based on conductivity changes in polyaniline nanofibers. The Journal of Physical Chemistry B, 110, 22266–22270. DOI: 10.1021/jp063166g. http://dx.doi.org/10.1021/jp063166g10.1021/jp063166gSearch in Google Scholar PubMed

[50] Wang, B. (2005). Recent development of non-platinum catalysts for oxygen reduction reaction. Journal of Power Sources, 152, 1–15. DOI: 10.1016/j.jpowsour.2005.05.098. http://dx.doi.org/10.1016/j.jpowsour.2005.05.09810.1016/j.jpowsour.2005.05.098Search in Google Scholar

[51] Watcharaphalakorn, S., Ruangchuay, L., Chotpattananont, D., Sirivat, A., & Schwank, J. (2005). Polyaniline/polyimide blends as gas sensors and electrical conductivity response to CO-N2 mixtures. Polymer International, 54, 1126–1133. DOI: 10.1002/pi.1815. http://dx.doi.org/10.1002/pi.181510.1002/pi.1815Search in Google Scholar

[52] Wu, A., Venancio, E. C., & MacDiarmid, A. G. (2007). Polyaniline and polypyrrole oxygen reversible electrodes. Synthetic Metals, 157, 303–310. DOI: 10.1016/j.synthmet.2007.03.008. http://dx.doi.org/10.1016/j.synthmet.2007.03.00810.1016/j.synthmet.2007.03.008Search in Google Scholar

[53] Wu, G., Li, L., Li, J.-H., & Xu, B.-Q. (2005). Polyanilinecarbon composite films as supports of Pt and PtRu particles for methanol electrooxidation. Carbon, 43, 2579–2587. DOI: 10.1016/j.carbon.2005.05.011. http://dx.doi.org/10.1016/j.carbon.2005.05.01110.1016/j.carbon.2005.05.011Search in Google Scholar

[54] Yang, Z., Coutinho, D. H., Sulfstede, R., Balkus, K. J., Jr., & Ferraris, J. P. (2008). Proton conductivity of acid-doped meta-polyaniline. Journal of Membrane Science, 313, 86–90. DOI: 10.1016/j.memsci.2007.12.071. http://dx.doi.org/10.1016/j.memsci.2007.12.07110.1016/j.memsci.2007.12.071Search in Google Scholar

[55] Zabrodskii, A. G., Kompan, M. E., Malyshkin, B. G., & Sapurina, I. Yu. (2006). Carbon supported polyaniline as anode catalyst: Pathway to platinum-free fuel cells. Technical Physics Letters, 32, 758–761. DOI: 10.1134/S1063785006090070. http://dx.doi.org/10.1134/S106378500609007010.1134/S1063785006090070Search in Google Scholar

[56] Zhu, Z.-Z., Wang, Z., & Li, H.-L. (2008). Functional multi-wall carbon nanotube/polyaniline composite films as supports of platinum for formic acid electrooxidation. Applied Surface Science, 254, 2934–2940. DOI: 10.1016/j.apsusc.2007.10.033. http://dx.doi.org/10.1016/j.apsusc.2007.10.03310.1016/j.apsusc.2007.10.033Search in Google Scholar

Published Online: 2009-8-25
Published in Print: 2009-10-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Magnetic nano- and microparticles in biotechnology
  2. Application of gas chromatography-mass spectrometry in research of traditional Chinese medicine
  3. Copper determination using ICP-MS with hexapole collision cell
  4. Reactivation of a palladium catalyst during glucose oxidation by molecular oxygen
  5. Robust stabilization of a chemical reactor
  6. Influence of production progress on the heavy metal content in flax fibers
  7. In vitro antifungal and antibacterial properties of thiodiamine transition metal complexes
  8. Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands
  9. Investigation of DNA cleavage activities of new oxime-type ligand complexes and molecular modeling of complex-DNA interactions
  10. Characterization of mechanochemically synthesized lead selenide
  11. Hydroxyapatite modified with silica used for sorption of copper(II)
  12. Corrosion resistance of zinc electrodeposited from acidic and alkaline electrolytes using pulse current
  13. Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis
  14. Synthesis of 2-[3-(trifluoromethyl)phenyl]furo[3,2-c]pyridine derivatives
  15. Key side products due to reactivity of dimethylmaleoyl moiety as amine protective group
  16. Comparative DFT study on the α-glycosidic bond in reactive species of galactosyl diphosphates
  17. Gas chromatographic retention times prediction for components of petroleum condensate fraction
  18. Gas chromatography with surface ionization detection of nitro pesticides
  19. Clean fuel-oriented investigation of thiophene oxidation by hydrogen peroxide using polyoxometalate as catalyst
  20. Aqueous foam stabilized by polyoxyethylene dodecyl ether
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0061-3/pdf?lang=en
Scroll to top button