Abstract
This review gives an overview of current trends in the investigation of confined molecules such as higher alcohols, ethylene glycol and polyethylene glycol as guest molecules in neat and functionalized mesoporous silica materials. All these molecules have both hydrophobic and hydrophilic parts. They are characteristic role-models for the investigation of confined surfactants. Their properties are studied by a combination of solid-state NMR and relaxometry with other physicochemical techniques and molecular dynamics techniques. It is shown that this combination delivers unique insights into the structure, arrangement, dynamical properties and the guest-host interactions inside the confinement.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Financial support by the Deutsche Forschungsgemeinschaft in the framework of the Forschergruppe FOR 1583 through grants Bu-911/18-1/2, Bu-911/24-1/2, and the National Science Foundation [grant no 1953428] is gratefully acknowledged.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry; Oxford University Press on Demand, 2001.10.1093/oso/9780198508823.001.0001Search in Google Scholar
2. Hartmann, M., Kostrov, X. Chem. Soc. Rev. 2013, 42, 6277. https://doi.org/10.1039/c3cs60021a.Search in Google Scholar PubMed
3. Nassif, N., Livage, J. Chem. Soc. Rev. 2011, 40, 849. https://doi.org/10.1039/c0cs00122h.Search in Google Scholar PubMed
4. Vafaeezadeh, M., Hashemi, M. M. J. Mol. Liq. 2015, 207, 73. https://doi.org/10.1016/j.molliq.2015.03.003.Search in Google Scholar
5. Han, W., Liu, C., Jin, Z. Adv. Synth. Catal. 2008, 350, 501. https://doi.org/10.1002/adsc.200700475.Search in Google Scholar
6. Pires, M., Purificação, S., Santos, A., Marques, M. Synthesis 2017, 49, 2337. https://doi.org/10.1055/s-0036-1589498.Search in Google Scholar
7. Khanmoradi, M., Nikoorazm, M., Ghorbani-Choghamarani, A. Catal. Lett. 2017, 147, 1114. https://doi.org/10.1007/s10562-016-1957-5.Search in Google Scholar
8. Buntkowsky, G., Vogel, M. Molecules 2020, 25, 3311; https://doi.org/10.3390/molecules25143311.Search in Google Scholar PubMed PubMed Central
9. Buntkowsky, G., Vogel, M., Winter, R. Z. Phys. Chem. 2018, 232, 937. https://doi.org/10.1515/zpch-2018-1110.Search in Google Scholar
10. Werner, M., Rothermel, N., Breitzke, H., Gutmann, T., Buntkowsky, G. Isr. J. Chem. 2014, 54, 60. https://doi.org/10.1002/ijch.201300095.Search in Google Scholar
11. Fumagalli, L., Esfandiar, A., Fabregas, R., Hu, S., Ares, P., Janardanan, A., Yang, Q., Radha, B., Taniguchi, T., Watanabe, K., Gomila, G., Novoselov, K. S., Geim, A. K. Science 2018, 360, 1339. https://doi.org/10.1126/science.aat4191.Search in Google Scholar PubMed
12. Carvalho, G., Paul, E., Novais, J. M., Pinheiro, H. M. Water Sci. Technol. 2000, 42, 135. https://doi.org/10.2166/wst.2000.0507.Search in Google Scholar
13. Hoffmann, M. Nonionic Liquid Surfactants as Green Solvents. U.S. Patent, US20080097121A1, 2008.Search in Google Scholar
14. Koganti, V. R., Rankin, S. E. J. Phys. Chem. B 2005, 109, 3279. https://doi.org/10.1021/jp045037a.Search in Google Scholar
15. Ramanathan, M., Shrestha, L. K., Mori, T., Ji, Q., Hill, J. P., Ariga, K. Phys. Chem. Chem. Phys. 2013, 15, 10580. https://doi.org/10.1039/c3cp50620g.Search in Google Scholar
16. Clark, K. K., Keller, A. A. Water Air Soil Pollut. 2012, 223, 3647. https://doi.org/10.1007/s11270-012-1138-0.Search in Google Scholar
17. Le Page, M., Beau, R., Duchene, J. Porous Silica Particles Containing a Crystallized Phase and Method. U.S. Patent US3493341A, 1970.Search in Google Scholar
18. Chiola, V., Ritsko, J. E., Vanderpool, C. D. Process for Producing Low-Bulk Density Silica. U.S. Patent US3556725A, 1970.Search in Google Scholar
19. Vinu, A., Hossain, K. Z., Ariga, K. J. Nanosci. Nanotechnol. 2005, 5, 347. https://doi.org/10.1166/jnn.2005.089.Search in Google Scholar
20. Yokoi, T., Yoshitake, H., Tatsumi, T. J. Mater. Chem. 2004, 14, 951. https://doi.org/10.1039/b310576h.Search in Google Scholar
21. Wang, X., Lin, K. S. K., Chan, J. C. C., Cheng, S. J. Phys. Chem. B 2005, 109, 1763. https://doi.org/10.1021/jp045798d.Search in Google Scholar
22. Gedat, E., Schreiber, A., Albrecht, J., Shenderovich, I., Findenegg, G., Limbach, H.-H., Buntkowsky, G., Buntkowsky, G. J. Phys. Chem. B 2002, 106, 1977. https://doi.org/10.1021/jp012391p.Search in Google Scholar
23. Medick, P., Blochowicz, T., Vogel, M., Roessler, E. J. Non-Cryst. Solids 2002, 307, 565. https://doi.org/10.1016/s0022-3093(02)01487-4.Search in Google Scholar
24. Dosseh, G., Xia, Y., Alba-Simionesco, C. J. Phys. Chem. B 2003, 107, 6445. https://doi.org/10.1021/jp034003k.Search in Google Scholar
25. Lusceac, S. A., Koplin, C., Medick, P., Vogel, M., Brodie-Linder, N., LeQuellec, C., Alba-Simionesco, C., Roessler, E. A. J. Phys. Chem. B 2004, 108, 16601. https://doi.org/10.1021/jp040376p.Search in Google Scholar
26. Alba-Simionesco, C., Coasne, B., Dosseh, G., Dudziak, G., Gubbins, K. E., Radhakrishnan, R., Sliwinska-Bartkowiak, M. J. Condens. Matter Phys. 2006, 18, R15. https://doi.org/10.1088/0953-8984/18/6/r01.Search in Google Scholar
27. Kiwilsza, A., Pajzderska, A., Gonzalez, M. A., Mielcarek, J., Wąsicki, J. J. Phys. Chem. C 2015, 119, 16578. https://doi.org/10.1021/acs.jpcc.5b02672.Search in Google Scholar
28. Krzyżak, A. T., Habina, I. Microporous Mesoporous Mater. 2016, 231, 230.10.1016/j.micromeso.2016.05.032Search in Google Scholar
29. Brilmayer, R., Kübelbeck, S., Khalil, A., Brodrecht, M., Kunz, U., Kleebe, H.-J., Buntkowsky, G., Baier, G., Andrieu-Brunsen, A. Adv. Mater. Interfaces 2020, 7, 1901914. https://doi.org/10.1002/admi.201901914.Search in Google Scholar
30. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834. https://doi.org/10.1021/ja00053a020.Search in Google Scholar
31. Zhao, D. Y., Huo, Q. S., Feng, J. L., Chmelka, B. F., Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024. https://doi.org/10.1021/ja974025i.Search in Google Scholar
32. Zhao, D. Y., Feng, J. L., Huo, Q. S., Melosh, N., Fredrickson, G. H., Chmelka, B. F., Stucky, G. D. Science 1998, 279, 548. https://doi.org/10.1126/science.279.5350.548.Search in Google Scholar PubMed
33. Nordberg, M. E. J. Am. Ceram. Soc. 1944, 27, 299. https://doi.org/10.1111/j.1151-2916.1944.tb14473.x.Search in Google Scholar
34. Gelb, L. D., Gubbins, K. E., Radhakrishnan, R., Sliwinska-Bartkowiak, M. Rep. Prog. Phys. 1999, 62, 1573. https://doi.org/10.1088/0034-4885/62/12/201.Search in Google Scholar
35. Ciesla, U., Schüth, F. Microporous Mesoporous Mater. 1999, 27, 131. https://doi.org/10.1016/s1387-1811(98)00249-2.Search in Google Scholar
36. Brunauer, S., Emmett, P. H., Teller, E. J. Am. Chem. Soc. 1938, 60, 309. https://doi.org/10.1021/ja01269a023.Search in Google Scholar
37. Barrett, E. P., Joyner, L. G., Halenda, P. P. J. Am. Chem. Soc. 1951, 73, 373. https://doi.org/10.1021/ja01145a126.Search in Google Scholar
38. Treacy, M. M. J., Higgins, J. B., von Ballmoos, R. Collection of Simulated XRD Powder Patterns for Zeolites; Elsevier: London, 1996.Search in Google Scholar
39. Marler, B., Oberhagemann, U., Vortmann, S., Gies, H. Microporous Mater. 1996, 6, 375. https://doi.org/10.1016/0927-6513(96)00016-8.Search in Google Scholar
40. Yao, M. H., Baird, R. J., Kunz, F. W., Hoost, T. E. J. Catal. 1997, 166, 67. https://doi.org/10.1006/jcat.1997.1504.Search in Google Scholar
41. Höhne, G., Hemminger, W. F., Flammersheim, H.-J. Differential Scanning Calorimetry; Springer: Berlin Heidelberg, 2003.10.1007/978-3-662-06710-9Search in Google Scholar
42. Hemminger, W. F., Cammenga, H. K. Methoden der thermischen Analyse; Springer: Berlin, 1989.10.1007/978-3-642-70175-7Search in Google Scholar
43. Freude, D., Kärger, J. Handbook of porous solids 2002, 1, 465.10.1002/9783527618286.ch14Search in Google Scholar
44. Koller, H., Weiß, M. Solid state NMR of porous materials. In Solid state NMR; Springer, 2011, pp 189–227.10.1007/128_2011_123Search in Google Scholar PubMed
45. Haouas, M., Martineau, C., Taulelle, F. Quadrupolar NMR of nanoporous materials. In eMagRes, 2011.10.1002/9780470034590.emrstm1216Search in Google Scholar
46. Kärger, J. ChemPhysChem 2015, 16, 24. https://doi.org/10.1002/cphc.201402340.Search in Google Scholar
47. Thankamony, A. S. L., Wittmann, J. J., Kaushik, M., Corzilius, B. Prog. NMR Spec. 2017, 120–195.10.1016/j.pnmrs.2017.06.002Search in Google Scholar
48. Rankin, A. G. M., Trébosc, J., Pourpoint, F., Amoureux, J.-P., Lafon, O. Solid State NMR 2019, 101, 116. https://doi.org/10.1016/j.ssnmr.2019.05.009.Search in Google Scholar
49. Faivre, C., Bellet, D., Dolino, G. Eur. Phys. J. B 1999, 7, 19. https://doi.org/10.1007/s100510050586.Search in Google Scholar
50. Alcoutlabi, M., McKenna, G. B. J. Condens. Matter Phys. 2005, 17, R461. https://doi.org/10.1088/0953-8984/17/15/r01.Search in Google Scholar
51. Schoen, M., Klapp, S. Rev. Comp. Chem. 2007, 24, 1.Search in Google Scholar
52. Buntkowsky, G., Breitzke, H., Adamczyk, A., Roelofs, F., Emmler, T., Gedat, E., Grünberg, B., Xu, Y., Limbach, H. H., Shenderovich, I., Vyalikh, A., Findenegg, G. H. Phys. Chem. Chem. Phys. 2007, 9, 4843. https://doi.org/10.1039/b707322d.Search in Google Scholar
53. Kärger, J., Pfeifer, H. Zeolites 1987, 7, 90. https://doi.org/10.1016/0144-2449(87)90067-4.Search in Google Scholar
54. Kaerger, J., Freude, D. Stud. Surf. Sci. Catal. 1997, 105, 551.10.1016/S0167-2991(97)80600-3Search in Google Scholar
55. Kaerger, J., Freude, D. Chem. Eng. Technol. 2002, 25, 769.10.1002/1521-4125(20020806)25:8<769::AID-CEAT769>3.0.CO;2-0Search in Google Scholar
56. Freude, D., Kärger, J. Handbook of porous solids 2002, 1, 465.10.1002/9783527618286.ch14Search in Google Scholar
57. Kärger, J., Freude, D., Haase, J. Processes 2018, 6, 147. https://doi.org/10.3390/pr6090147.Search in Google Scholar
58. Kaerger, J., Valiullin, R. Chem. Soc. Rev. 2013, 42, 4172.10.1039/c3cs35326eSearch in Google Scholar PubMed
59. Findenegg, G. H., Jaehnert, S., Akcakayiran, D., Schreiber, A. Chem. Phys. Chem. 2008, 9, 2651. https://doi.org/10.1002/cphc.200800616.Search in Google Scholar PubMed
60. Geppi, M., Borsacchi, S., Mollica, G., Veracini, C. A. Appl. Spectrosc. Rev. 2009, 44, 1.10.1080/05704920802352564Search in Google Scholar
61. Vogel, M. Eur. Phys. J. 2010, 189, 47. https://doi.org/10.1140/epjst/e2010-01309-9.Search in Google Scholar
62. Yang, Y., Beele, B., Bluemel, J. J. Am. Chem. Soc. 2008, 130, 3771–+. https://doi.org/10.1021/ja800541c.Search in Google Scholar PubMed
63. Bluemel, J. Coord. Chem. Rev. 2008, 252, 2410.10.1016/j.ccr.2008.06.013Search in Google Scholar
64. Gutmann, T., Grünberg, A., Rothermel, N., Werner, M., Srour, M., Abdulhussain, S., Tan, S., Xu, Y., Breitzke, H., Buntkowsky, G. Solid State NMR 2013, 55/56, 1–11.10.1016/j.ssnmr.2013.06.004Search in Google Scholar PubMed
65. Motokura, K., Itagaki, S., Iwasawa, Y., Miyaji, A., Baba, T. Green Chem. 2009, 11, 1876. https://doi.org/10.1039/b916764c.Search in Google Scholar
66. Wang, Q., Jordan, E., Shantz, D. F. J. Phys. Chem. C 2009, 113, 18142. https://doi.org/10.1021/jp9013527.Search in Google Scholar
67. Gath, J., Hoaston, G. L., Vold, R. L., Berthoud, R., Coperet, C., Grellier, M., Sabo-Etienne, S., Lesage, A., Emsley, L. Phys. Chem. Chem. Phys. 2009, 11, 6962. https://doi.org/10.1039/b907665d.Search in Google Scholar PubMed
68. Kandel, K., Althaus, S. M., Peeraphatdit, C., Kobayashi, T., Trewyn, B. G., Pruski, M., Slowing, I. I. J. Catal. 2012, 291, 63. https://doi.org/10.1016/j.jcat.2012.04.005.Search in Google Scholar
69. Kandel, K., Althaus, S. M., Peeraphatdit, C., Kobayashi, T., Trewyn, B. G., Pruski, M., Slowing, I. I. ACS Catal 2013, 3, 265. https://doi.org/10.1021/cs300748g.Search in Google Scholar
70. Jayanthi, S., Frydman, V., Vega, S. J. Phys. Chem. B 2012, 116, 10398. https://doi.org/10.1021/jp3061152.Search in Google Scholar PubMed
71. Sundaresan, J., Werner, M., Yeping, X., Buntkowsky, G., Vega, S. J Phys Chem C J Phys Chem C 2013.Search in Google Scholar
72. Jayanthi, S., Kababya, S., Schmidt, A., Vega, S. J. Phys. Chem. C 2016, 120, 2797. https://doi.org/10.1021/acs.jpcc.5b11429.Search in Google Scholar
73. Saint-Arroman, R. P., Chabanas, M., Baudouin, A., Coperet, C., Basset, J. H., Lesage, A., Emsley, L. J. Am. Chem. Soc. 2001, 123, 3820. https://doi.org/10.1021/ja002259n.Search in Google Scholar PubMed
74. Rataboul, F., Chabanas, M., de Mallmann, A., Coperet, C., Thivolle-Cazat, J., Basset, J. M. Chem. Eur J. 2003, 9, 1426. https://doi.org/10.1002/chem.200390162.Search in Google Scholar PubMed
75. Blanc, F., Basset, J. M., Coperet, C., Sinha, A., Tonzetich, Z. J., Schrock, R. R., Solans-Monfort, X., Clot, E., Eisenstein, O., Lesage, A., Emsley, L. J. Am. Chem. Soc. 2008, 130, 5886. https://doi.org/10.1021/ja077749v.Search in Google Scholar PubMed
76. Gajan, D., Levine, D., Zocher, E., Coperet, C., Lesage, A., Emsley, L. Chem. Sci. 2011, 2, 928. https://doi.org/10.1039/c0sc00579g.Search in Google Scholar
77. Lelli, M., Gajan, D., Lesage, A., Caporini, M. A., Vitzthum, V., Mieville, P., Heroguel, F., Rascon, F., Roussey, A., Thieuleux, C., Boualleg, M., Veyre, L., Bodenhausen, G., Coperet, C., Emsley, L. J. Am. Chem. Soc. 2011, 133, 2104–2107.10.1021/ja110791dSearch in Google Scholar PubMed
78. Kerber, R. N., Kermagoret, A., Callens, E., Florian, P., Massiot, D., Lesage, A., Coperet, C., Delbecq, F., Rozanska, X., Sautet, P. J. Am. Chem. Soc. 2012, 134, 6767. https://doi.org/10.1021/ja3008566.Search in Google Scholar PubMed
79. Valla, M., Rossini, A. J., Caillot, M., Chizallet, C., Raybaud, P., Digne, M., Chaumonnot, A., Lesage, A., Emsley, L., van Bokhoven, J. A., Coperet, C. J. Am. Chem. Soc. 2015, 137, 10710. https://doi.org/10.1021/jacs.5b06134.Search in Google Scholar PubMed PubMed Central
80. Conley, M., Coperet, C., Andersen, R. Abstr. Pap. Am. Chem. Soc. 2016, 251.Search in Google Scholar
81. Conley, M. P., Lapadula, G., Sanders, K., Gajan, D., Lesage, A., Del Rosa, I., Maron, L., Lukens, W. W., Coperet, C., Andersen, R. A. J. Am. Chem. Soc. 2016, 138, 3831. https://doi.org/10.1021/jacs.6b00071.Search in Google Scholar PubMed
82. Delley, M. F., Lapadula, G., Nunez-Zarur, F., Comas-Vives, A., Kalendra, V., Jeschke, G., Baabe, D., Walter, M. D., Rossini, A. J., Lesage, A., Emsley, L., Maury, O., Coperet, C. J. Am. Chem. Soc. 2017, 139, 8855. https://doi.org/10.1021/jacs.7b02179.Search in Google Scholar PubMed
83. Estes, D. P., Gordon, C. P., Fedorov, A., Liao, W. C., Ehrhorn, H., Bittner, C., Zier, M. L., Bockfeld, D., Chan, K. W., Eisenstein, O., Raynaud, C., Tamm, M., Coperet, C. J. Am. Chem. Soc. 2017, 139, 17597. https://doi.org/10.1021/jacs.7b09934.Search in Google Scholar PubMed
84. Trebosc, J., Wiench, J. W., Huh, S., Lin, V. S. Y., Pruski, M. J. Am. Chem. Soc. 2005, 127, 7587. https://doi.org/10.1021/ja0509127.Search in Google Scholar PubMed
85. Mao, K., Pruski, M. J. Magn. Reson. 2009, 201, 165. https://doi.org/10.1016/j.jmr.2009.09.004.Search in Google Scholar PubMed
86. Mao, K., Wiench, J. W., Lin, V., Pruski, M. J. Magn. Reson. 2009, 196, 92. https://doi.org/10.1016/j.jmr.2008.10.010.Search in Google Scholar PubMed
87. Hsin, T. M., Chen, S., Guo, E., Tsai, C. H., Pruski, M., Lin, V. Top. Catal. 2010, 53, 746. https://doi.org/10.1007/s11244-010-9462-3.Search in Google Scholar
88. Mao, K., Kobayashi, T., Wiench, J. W., Chen, H. T., Tsai, C. H., Lin, V. S. Y., Pruski, M. J. Am. Chem. Soc. 2010, 132, 12452. https://doi.org/10.1021/ja105007b.Search in Google Scholar PubMed
89. Kobayashi, T., Mao, K., Wang, S. G., Lin, V., Pruski, M. Solid State NMR 2011, 39, 65. https://doi.org/10.1016/j.ssnmr.2011.02.001.Search in Google Scholar PubMed
90. Hara, K., Akahane, S., Wiench, J. W., Burgin, B. R., Ishito, N., Lin, V. S. Y., Fukuoka, A., Pruski, M. J. Phys. Chem. C 2012, 116, 7083. https://doi.org/10.1021/jp300580f.Search in Google Scholar
91. Kobayashi, T., Singappuli-Arachchige, D., Wang, Z. R., Slowing, I. I., Pruski, M. Phys. Chem. Chem. Phys. 2017, 19, 1781. https://doi.org/10.1039/c6cp07642d.Search in Google Scholar PubMed
92. Perras, F., Kobayashi, T., Pruski, M. Abstr. Pap. Am. Chem. Soc. 2017, 253.Search in Google Scholar
93. Kobayashi, T., Singappuli-Arachchige, D., Slowing, I. I., Pruski, M. Phys. Chem. Chem. Phys. 2018, 20, 22203. https://doi.org/10.1039/c8cp04425b.Search in Google Scholar PubMed
94. Kobayashi, T., Pruski, M. ACS Catal 2019, 9, 7238. https://doi.org/10.1021/acscatal.9b02017.Search in Google Scholar
95. Adamczyk, A., Xu, Y., Walaszek, B., Roelofs, F., Pery, T., Pelzer, K., Philippot, K., Chaudret, B., Limbach, H. H., Breitzke, H., Buntkowsky, G. Top. Catal. 2008, 48, 75. https://doi.org/10.1007/s11244-008-9054-7.Search in Google Scholar
96. Gutmann, T., Ratajczyk, T., Xu, Y. P., Breitzke, H., Grunberg, A., Dillenberger, S., Bommerich, U., Trantzschel, T., Bernarding, J., Buntkowsky, G. Solid State NMR 2010, 38, 90. https://doi.org/10.1016/j.ssnmr.2011.03.001.Search in Google Scholar PubMed
97. Grunberg, A., Gutmann, T., Rothermel, N., Xu, Y. P., Breitzke, H., Buntkowsky, G. Z. Phys. Chem. 2013, 227, 901. https://doi.org/10.1524/zpch.2013.0398.Search in Google Scholar
98. Gutmann, T., Grunberg, A., Rothermel, N., Werner, M., Srour, M., Abdulhussain, S., Tan, S. L., Xu, Y. P., Breitzke, H., Buntkowsky, G. Solid State NMR 2013, 55–56, 1. https://doi.org/10.1016/j.ssnmr.2013.06.004.Search in Google Scholar PubMed
99. Abdulhussain, S., Breitzke, H., Ratajczyk, T., Grunberg, A., Srour, M., Arnaut, D., Weidler, H., Kunz, U., Kleebe, H. J., Bommerich, U., Bernarding, J., Gutmann, T., Buntkowsky, G. Chem. Eur J. 2014, 20, 1159. https://doi.org/10.1002/chem.201303020.Search in Google Scholar PubMed
100. Gutmann, T., Alkhagani, S., Rothermel, N., Limbach, H. H., Breitzke, H., Buntkowsky, G. Z. Phys. Chem. 2017, 231, 653. https://doi.org/10.1515/zpch-2016-0837.Search in Google Scholar
101. Liu, J. Q., Groszewicz, P. B., Wen, Q. B., Thankamony, A. S. L., Zhang, B., Kunz, U., Sauer, G., Xu, Y. P., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2017, 121, 17409. https://doi.org/10.1021/acs.jpcc.7b06807.Search in Google Scholar
102. de Oliveira, M., Seeburg, D., Weiß, J., Wohlrab, S., Buntkowsky, G., Bentrup, U., Gutmann, T. Catal. Sci. Technol. 2019, 9, 6180. https://doi.org/10.1039/c9cy01410a.Search in Google Scholar
103. de Oliveira, M., Herr, K., Brodrecht, M., Haro-Mares, N. B., Wissel, T., Klimavicius, V., Breitzke, H., Gutmann, T., Buntkowsky, G. Phys. Chem. Chem. Phys. 2021, 23, 12559. https://doi.org/10.1039/d1cp00985k.Search in Google Scholar PubMed
104. Li, Z., Rösler, L., Wissel, T., Breitzke, H., Gutmann, T., Buntkowsky, G. J. CO2 Util. 2021, 52, 101682. https://doi.org/10.1016/j.jcou.2021.101682.Search in Google Scholar
105. Srour, M., Hadjiali, S., Brunnengräber, K., Weidler, H., Xu, Y., Breitzke, H., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2021, 125, 7178. https://doi.org/10.1021/acs.jpcc.1c00112.Search in Google Scholar
106. Folliet, N., Gervais, C., Costa, D., Laurent, G., Babonneau, F., Stievano, L., Lambert, J.-F., Tielens, F. J. Phys. Chem. C 2013, 117, 4104. https://doi.org/10.1021/jp312195a.Search in Google Scholar
107. Ukmar, T., Cendak, T., Mazaj, M., Kaucic, V., Mali, G. J. Phys. Chem. C 2012, 116, 2662. https://doi.org/10.1021/jp2087016.Search in Google Scholar
108. Azaïs, T., Laurent, G., Panesar, K., Nossov, A., Guenneau, F., Sanfeliu Cano, C., Tourné-Péteilh, C., Devoisselle, J.-M., Babonneau, F. J. Phys. Chem. C 2017, 121, 26833. https://doi.org/10.1021/acs.jpcc.7b08919.Search in Google Scholar
109. Tielens, F., Folliet, N., Bondaz, L., Etemovic, S., Babonneau, F., Gervais, C., Azaïs, T. J. Phys. Chem. C 2017, 121, 17339. https://doi.org/10.1021/acs.jpcc.7b05045.Search in Google Scholar
110. Klimavicius, V., Dagys, L., Chizhik, V., Balevicius, V. Appl. Magn. Reson. 2017, 48, 673. https://doi.org/10.1007/s00723-017-0891-z.Search in Google Scholar
111. Wu, C., Guo, F., Zhuang, L., Ai, X., Zhong, F., Yang, H., Qian, J. ACS Energy Lett 2020, 5, 1644. https://doi.org/10.1021/acsenergylett.0c00804.Search in Google Scholar
112. Langer, J., Epp, V., Heitjans, P., Mautner, F. A., Wilkening, M. Phys. Rev. B 2013, 88, 094304; https://doi.org/10.1103/physrevb.88.094304.Search in Google Scholar
113. Heitjans, P. Z. Phys. Chem. 2015, 229, 1263. https://doi.org/10.1515/zpch-2015-9033.Search in Google Scholar
114. Wang, Q., Sarkar, A., Wang, Di., Velasco, L., Azmi, R., Bhattacharya, S. S., Bergfeldt, T., Düvel, A., Heitjans, P., Brezesinski, T., Hahn, H., Breitung, B. Energy Environ. Sci. 2019, 12, 2433. https://doi.org/10.1039/c9ee00368a.Search in Google Scholar
115. Heitjans, P., Kärger, J. Diffusion in Condensed Matter: Methods, Materials, Models, 3rd ed.; Springer: Berlin, 2018.Search in Google Scholar
116. Ishii, Y., Tycko, R. J. Magn. Reson. 2000, 142, 199. https://doi.org/10.1006/jmre.1999.1976.Search in Google Scholar PubMed
117. Maly, T., Debelouchina, G. T., Bajaj, V. S., Hu, K., Joo, C., Mak-Jurkauskas, M. L., Sirigiri, J. R., van der Wel, P. C. A., Herzfeld, J., Temkin, R. J., Griffin, R. G. J. Chem. Phys. 2008, 128, 52211. https://doi.org/10.1063/1.2833582.Search in Google Scholar PubMed PubMed Central
118. Hovav, Y., Feintuch, A., Vega, S. Phys. Chem. Chem. Phys. 2013, 15, 188. https://doi.org/10.1039/c2cp42897k.Search in Google Scholar PubMed
119. Mentink-Vigier, F., Akbey, U., Hovav, Y., Vega, S., Oschkinat, H., Feintuch, A. J. Magn. Reson. 2012, 224, 13. https://doi.org/10.1016/j.jmr.2012.08.013.Search in Google Scholar PubMed
120. Hovav, Y., Feintuch, A., Vega, S. J. Magn. Reson. 2012, 214, 29. https://doi.org/10.1016/j.jmr.2011.09.047.Search in Google Scholar PubMed
121. Lesage, A., Lelli, M., Gajan, D., Caporini, M. A., Vitzthum, V., Mieville, P., Alauzun, J., Roussey, A., Thieuleux, C., Mehdi, A., Bodenhausen, G., Coperet, C., Emsley, L. J. Am. Chem. Soc. 2010, 132, 15459. https://doi.org/10.1021/ja104771z.Search in Google Scholar PubMed
122. Conley, M. P., Drost, R. M., Baffert, M., Gajan, D., Elsevier, C., Franks, W. T., Oschkinat, H., Veyre, L., Zagdoun, A., Rossini, A., Lelli, M., Lesage, A., Casano, G., Ouari, O., Tordo, P., Emsley, L., Coperet, C., Thieuleux, C. Chem. Eur J. 2013, 19, 12234. https://doi.org/10.1002/chem.201302484.Search in Google Scholar PubMed
123. Conley, M. P., Rossini, A. J., Comas-Vives, A., Valla, M., Casano, G., Ouari, O., Tordo, P., Lesage, A., Emsley, L., Coperet, C. Phys. Chem. Chem. Phys. 2014, 16, 17822. https://doi.org/10.1039/c4cp01973c.Search in Google Scholar PubMed
124. Ong, T. C., Liao, W. C., Mougel, V., Gajan, D., Lesage, A., Emsley, L., Coperet, C. Angew. Chem. Int. Ed. 2016, 55, 4743. https://doi.org/10.1002/anie.201510821.Search in Google Scholar PubMed
125. Liao, W. C., Ong, T. C., Gajan, D., Bernada, F., Sauvee, C., Yulikov, M., Pucino, M., Schowner, R., Schwarzwalder, M., Buchmeiser, M. R., Jeschke, G., Tordo, P., Ouari, O., Lesage, A., Emsley, L., Coperet, C. Chem. Sci. 2017, 8, 416. https://doi.org/10.1039/c6sc03139k.Search in Google Scholar PubMed PubMed Central
126. Pump, E., Bendjeriou-Sedjerari, A., Viger-Gravel, J., Gajan, D., Scotto, B., Samantaray, M. K., Abou-Hamad, E., Gurinov, A., Almaksoud, W., Cao, Z., Lesage, A., Cavallo, L., Emsley, L., Basset, J. M. Chem. Sci. 2018, 9, 4866. https://doi.org/10.1039/c8sc00532j.Search in Google Scholar PubMed PubMed Central
127. Azais, T., von Euw, S., Ajili, W., Auzoux-Bordenave, S., Bertani, P., Gajan, D., Emsley, L., Nassif, N., Lesage, A. Solid State NMR 2019, 102, 2. https://doi.org/10.1016/j.ssnmr.2019.06.001.Search in Google Scholar PubMed
128. Eisenschmidt, T. C., Kirss, R. U., Deutsch, P. P., Hommeltoft, S. I., Eisenberg, R., Bargon, J., Lawler, R. G., Balch, A. L. J. Am. Chem. Soc. 1987, 109, 8089. https://doi.org/10.1021/ja00260a026.Search in Google Scholar
129. Bowers, C. R., Weitekamp, D. P. Phys. Rev. Lett. 1986, 57, 2645. https://doi.org/10.1103/physrevlett.57.2645.Search in Google Scholar
130. Bowers, C. R., Jones, D. H., Kurur, N. D., Labinger, J. A., Pravica, M. G., Weitekamp, D. P. Adv. Magn. Res. 1990, 15, 269. https://doi.org/10.1016/b978-0-12-025514-6.50018-6.Search in Google Scholar
131. Hunger, M. Catal. Today 2004, 97, 3. https://doi.org/10.1016/j.cattod.2004.03.061.Search in Google Scholar
132. Henning, H., Dyballa, M., Scheibe, M., Klemm, E., Hunger, M. Chem. Phys. Lett. 2013, 555, 258. https://doi.org/10.1016/j.cplett.2012.10.068.Search in Google Scholar
133. Arzumanov, S. S., Stepanov, A. G. J. Phys. Chem. C 2013, 117, 2888. https://doi.org/10.1021/jp311345r.Search in Google Scholar
134. Buntkowsky, G., Gutmann, T., Petrova, M. V., Ivanov, K. L., Bommerich, U., Plaumann, M., Bernarding, J. Solid State NMR 2014, 63-64, 20. https://doi.org/10.1016/j.ssnmr.2014.07.002.Search in Google Scholar PubMed
135. Heinze, M. T., Zill, J. C., Matysik, J., Einicke, W. D., Gläser, R., Stark, A. Phys. Chem. Chem. Phys. 2014, 16, 24359. https://doi.org/10.1039/c4cp02749c.Search in Google Scholar PubMed
136. Fraissard, J., Jameson, C., Saam, B., Brunner, E., Hersman, W., Goodson, B., Meersmann, T., Fujiwara, H., Wang, L.-Q., Sozzani, P. Hyperpolarized Xenon-129 Magnetic Resonance: Concepts, Production, Techniques and Applications; Royal Society of Chemistry: London Cambridge, 2015.Search in Google Scholar
137. Shantz, D. F., Fild, C., Koller, H., Lobo, R. F. J. Phys. Chem. B 1999, 103, 10858. https://doi.org/10.1021/jp992549u.Search in Google Scholar
138. Shantz, D. F., Lobo, R. F. Top. Catal. 1999, 9, 1. https://doi.org/10.1023/a:1019146102527.10.1023/A:1019146102527Search in Google Scholar
139. Wang, B., Côté, A. P., Furukawa, H., O’Keeffe, M., Yaghi, O. M. Nature 2008, 453, 207. https://doi.org/10.1038/nature06900.Search in Google Scholar PubMed
140. Riedel, E., Janiak, C. Anorganische Chemie; De Gruyter: Oldenburg, 2007.10.1515/9783110189032Search in Google Scholar
141. Zhang, C., Lively, R. P., Zhang, K., Johnson, J. R., Karvan, O., Koros, W. J. J. Phys. Chem. Lett. 2012, 3, 2130. https://doi.org/10.1021/jz300855a.Search in Google Scholar PubMed
142. CEJKA, J., van Bekkum, H., Corma, A., Schüth, F. Introduction to Zeolite Science and Practice, in Studies in Surface Science and Catalysis, Vol. 168; Elsevier BV: Amsterdam, Neth, 2007.Search in Google Scholar
143. Demuth, D., Sattig, M., Steinrücken, E., Weigler, M., Vogel, M. Z. Phys. Chem. 2018, 232, 1059. https://doi.org/10.1515/zpch-2017-1027.Search in Google Scholar
144. Kärger, J., Vasenkov, S., Auerbach, S. M. Diffusion in zeolites. In Handbook of Zeolite Science and Technology; CRC Press, 2003, pp 458–560.10.1201/9780203911167.ch10Search in Google Scholar
145. Weigler, M., Brodrecht, M., Breitzke, H., Dietrich, F., Sattig, M., Buntkowsky, G., Vogel, M. Z. Phys. Chem. 2018, 232, 1041. https://doi.org/10.1515/zpch-2017-1034.Search in Google Scholar
146. Grünberg, B., Emmler, T., Gedat, E., Shenderovich, I., Findenegg, G. H., Limbach, H. H., Buntkowsky, G. Chem. Eur J. 2004, 10, 5689. https://doi.org/10.1002/chem.200400351.Search in Google Scholar
147. Brodrecht, M., Breitzke, H., Gutmann, T., Buntkowsky, G. Chem. Eur J. 2018, 24, 17814. https://doi.org/10.1002/chem.201804065.Search in Google Scholar
148. Brodrecht, M., Kumari, B., Breitzke, H., Gutmann, T., Buntkowsky, G. Z. Phys. Chem. 2018, 232, 1127. https://doi.org/10.1515/zpch-2017-1059.Search in Google Scholar
149. Brodrecht, M., Kunnari, B., Thankamony, A. S. S. L., Breitzke, H., Gutmann, T., Buntkowsky, G. Chem. Eur J. 2019, 25, 5214. https://doi.org/10.1002/chem.201805480.Search in Google Scholar
150. Schottner, S., Brodrecht, M., Uhlein, E., Dietz, C., Breitzke, H., Tietze, A. A., Buntkowsky, G., Gallei, M. Macromolecules 2019, 52, 2631. https://doi.org/10.1021/acs.macromol.8b02758.Search in Google Scholar
151. Grün, M., Unger, K. K., Matsumoto, A., Tsutsumi, K. Microporous Mesoporous Mater. 1999, 27, 207. https://doi.org/10.1016/s1387-1811(98)00255-8.Search in Google Scholar
152. Buntkowsky, G., Vogel, M., Winter, R. Z. Phys. Chem. 2018, 232, 937. https://doi.org/10.1515/zpch-2018-1110.Search in Google Scholar
153. Richert, R. Annu. Rev. Phys. Chem. 2011, 62, 65. https://doi.org/10.1146/annurev-physchem-032210-103343.Search in Google Scholar PubMed
154. Brodrecht, M., Klotz, E., Lederle, C., Breitzke, H., Stühn, B., Vogel, M., Buntkowsky, G. Z. Phys. Chem. 2018, 232, 1003–1016. https://doi.org/10.1515/zpch-2017-1030.Search in Google Scholar
155. Guo, X.-Y., Watermann, T., Sebastiani, D. J. Phys. Chem. B 2014, 118, 10207. https://doi.org/10.1021/jp505203t.Search in Google Scholar PubMed
156. Hermens, J. L., de Bruijn, J. H., Brooke, D. N. Environ. Toxicol. Chem. 2013, 32, 732. https://doi.org/10.1002/etc.2141.Search in Google Scholar PubMed
157. Leo, A., Hansch, C., Elkins, D. Chem. Rev. 1971, 71, 525. https://doi.org/10.1021/cr60274a001.Search in Google Scholar
158. Kumari, B., Brodrecht, M., Gutmann, T., Breitzke, H., Buntkowsky, G. Appl. Magn. Reson. 2019, 50, 1399. https://doi.org/10.1007/s00723-019-01156-2.Search in Google Scholar
159. Kumari, B., Brodrecht, M., Breitzke, H., Werner, M., Grunberg, B., Limbach, H. H., Forg, S., Sanjon, E. P., Drossel, B., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2018, 122, 19540. https://doi.org/10.1021/acs.jpcc.8b04745.Search in Google Scholar
160. Vyalikh, A., Emmler, T., Shenderovich, I., Zeng, Y., Findenegg, G. H., Buntkowsky, G. Phys. Chem. Chem. Phys. 2007, 9, 2249. https://doi.org/10.1039/b617744a.Search in Google Scholar PubMed
161. Vyalikh, A., Emmler, T., Gedat, E., Shenderovich, I., Findenegg, G. H., Limbach, H. H., Buntkowsky, G. Solid State NMR 2005, 28, 117. https://doi.org/10.1016/j.ssnmr.2005.07.001.Search in Google Scholar PubMed
162. Harrach, M. F., Drossel, B., Winschel, W., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2015, 119, 28961. https://doi.org/10.1021/acs.jpcc.5b09537.Search in Google Scholar
163. van Rossum, B. J., Förster, H., de Groot, H. J. M. J. Magn. Reson. 1997, 124, 516. https://doi.org/10.1006/jmre.1996.1089.Search in Google Scholar
164. Hoffmann, M. M., Bothe, S., Brodrecht, M., Klimavicius, V., Haro-Mares, N. B., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2020, 124, 5145. https://doi.org/10.1021/acs.jpcc.9b10504.Search in Google Scholar
165. Hoffmann, M. M., Bothe, S., Gutmann, T., Buntkowsky, G. J. Phys. Chem. B 2018, 122, 4913. https://doi.org/10.1021/acs.jpcb.8b03456.Search in Google Scholar
166. Hoffmann, M. M., Too, M. D., Vogel, M., Gutmann, T., Buntkowsky, G. J. Phys. Chem. B 2020, 124, 9115. https://doi.org/10.1021/acs.jpcb.0c06124.Search in Google Scholar
167. Hoffmann, M. M., Horowitz, R. H., Gutmann, T., Buntkowsky, G. J. Chem. Eng. Data 2021, 66, 2480. https://doi.org/10.1021/acs.jced.1c00101.Search in Google Scholar
168. Daube, D., Aladin, V., Heiliger, J., Wittmann, J. J., Barthelmes, D., Bengs, C., Schwalbe, H., Corzilius, B. J. Am. Chem. Soc. 2016, 138, 16572. https://doi.org/10.1021/jacs.6b08683.Search in Google Scholar
169. Hoffmann, M. M., Bothe, S., Gutmann, T., Hartmann, F.-F., Reggelin, M., Buntkowsky, G. J. Phys. Chem. C 2017, 121, 2418. https://doi.org/10.1021/acs.jpcc.6b13087.Search in Google Scholar
170. Aladin, V., Corzilius, B. Solid State NMR 2019, 99, 27. https://doi.org/10.1016/j.ssnmr.2019.02.004.Search in Google Scholar
171. Park, H., Uluca-Yazgi, B., Heumann, S., Schlögl, R., Granwehr, J., Heise, H., Schleker, P. P. M. J. Magn. Reson. 2020, 312, 106688. https://doi.org/10.1016/j.jmr.2020.106688.Search in Google Scholar
172. Gibby, M. G., Pines, A., Waugh, J. S. Chem. Phys. Lett. 1972, 16, 296. https://doi.org/10.1016/0009-2614(72)80276-8.Search in Google Scholar
173. White, J. L., Haw, J. F. J. Am. Chem. Soc. 1990, 112, 5896. https://doi.org/10.1021/ja00171a049.Search in Google Scholar
174. Macdonald, P. M., Soong, R. J. Magn. Reson. 2007, 188, 1. https://doi.org/10.1016/j.jmr.2007.06.002.Search in Google Scholar
175. Higgins, J. S., Hodgson, A. H., Law, R. V. J. Mol. Struct. 2002, 602–603, 505. https://doi.org/10.1016/s0022-2860(01)00731-1.Search in Google Scholar
176. Hoffmann, M. M., Bothe, S., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2017, 121, 22948. https://doi.org/10.1021/acs.jpcc.7b07965.Search in Google Scholar
177. Bothe, S., Hoffmann, M. M., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2017, 121, 27089. https://doi.org/10.1021/acs.jpcc.7b07967.Search in Google Scholar
178. Bothe, S., Nowag, J., Klimavičius, V., Hoffmann, M., Troitskaya, T. I., Amosov, E. V., Tormyshev, V. M., Kirilyuk, I., Taratayko, A., Kuzhelev, A., Parkhomenko, D., Bagryanskaya, E., Gutmann, T., Buntkowsky, G. J. Phys. Chem. C 2018, 122, 11422. https://doi.org/10.1021/acs.jpcc.8b02570.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preface
- Special issue on the occasion of the 75th birthday of Paul Heitjans
- Contribution to Special Issue dedicated to Paul Heitjans
- Unusual cation coordination in nanostructured mullites
- A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
- Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
- Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
- Status and progress of ion-implanted βNMR at TRIUMF
- How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
- Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
- Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
- Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
- How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
- Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
- Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
- Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
- On the CaF2-BaF2 interface
- The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
- Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
- Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
- Ionic transport in K2Ti6O13
- F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
- An overview of thermotransport in fluorite-related ionic oxides
Articles in the same Issue
- Frontmatter
- Preface
- Special issue on the occasion of the 75th birthday of Paul Heitjans
- Contribution to Special Issue dedicated to Paul Heitjans
- Unusual cation coordination in nanostructured mullites
- A novel high entropy spinel-type aluminate MAl2O4 (M = Zn, Mg, Cu, Co) and its lithiated oxyfluoride and oxychloride derivatives prepared by one-step mechanosynthesis
- Two new quaternary copper bismuth sulfide halides: CuBi2S3Cl and CuBi2S3Br as candidates for copper ion conductivity
- Sintering behavior and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 synthesized with different precursors
- Status and progress of ion-implanted βNMR at TRIUMF
- How Li diffusion in spinel Li[Ni1/2Mn3/2]O4 is seen with μ ±SR
- Nuclear magnetic resonance (NMR) studies of sintering effects on the lithium ion dynamics in Li1.5Al0.5Ti1.5(PO4)3
- Anion reorientations and cation diffusion in a carbon-substituted sodium nido-borate Na-7,9-C2B9H12: 1H and 23Na NMR studies
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: I. A multinuclear solid state NMR study of the system Li6PS5-xSexI and of Li6AsS5I
- Site preferences and ion dynamics in lithium chalcohalide solid solutions with argyrodite structure: II. Multinuclear solid state NMR of the systems Li6PS5−x Se x Cl and Li6PS5−x Se x Br
- Independent component analysis combined with Laplace inversion of spectrally resolved spin-alignment echo/T 1 3D 7Li NMR of superionic Li10GeP2S12
- How the cation size impacts on the relaxational and diffusional dynamics of supercooled butylammonium-based ionic liquids: DPEBA–TFSI versus BTMA–TFSI
- Solid-state NMR studies of non-ionic surfactants confined in mesoporous silica
- Inorganic-organic hybrid materials based on the intercalation of radical cations: 2-(4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl-3-N-oxide in fluoromica clay
- Lithium tracer diffusion in near stoichiometric LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
- On the CaF2-BaF2 interface
- The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements
- Thin-film chemical expansion of ceria based solid solutions: laser vibrometry study
- Predicting conductivities of alkali borophosphate glasses based on site energy distributions derived from network former unit concentrations
- Ionic transport in K2Ti6O13
- F anion transport in nanocrystalline SmF3 and in mechanosynthesized, vacancy-rich Sm1—x BaxF3—x
- An overview of thermotransport in fluorite-related ionic oxides