Startseite Synthesis, crystal structure and nonlinear optical property of 1-((propan-2-ylideneamino)oxy)propan-2-yl-4-methylbenzenesulfonate, C13H19O4NS
Artikel Open Access

Synthesis, crystal structure and nonlinear optical property of 1-((propan-2-ylideneamino)oxy)propan-2-yl-4-methylbenzenesulfonate, C13H19O4NS

  • Guo-Ling Li und Ran Zhang ORCID logo EMAIL logo
Veröffentlicht/Copyright: 20. Juni 2024

Abstract

C13H19O4NS, monoclinic, Cc (no. 9), a = 11.4661(6) Å, b = 11.7180(7) Å, c = 12.1509(7) Å, β = 115.395(2)°, V = 1474.84(15) Å3, Z = 4, Rgt (F) = 0.0253, wRref (F 2) = 0.0643, T = 200(2) K. The title compound crystallizes in a non-centrosymmetric space group.

CCDC no.: 2359932

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.18 × 0.12 × 0.11 mm
Wavelength:

μ:
Mo Kα radiation (0.71073 Å)

0.23 mm−1
Diffractometer, scan mode:

θ max, completeness:
Bruker APEX-II, φ and ω

27.5°, 99 %
N(hkl)measured, N(hkl)unique, R int: 11578, 3094, 0.025
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2981
N(param)refined: 176
Programs: Bruker, 1 SHELX 2
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.1658 (3) 0.4056 (3) 0.3497 (3) 0.0575 (7)
H1A 0.1562 0.4429 0.4175 0.086*
H1B 0.1945 0.3267 0.3720 0.086*
H1C 0.0826 0.4059 0.2776 0.086*
C2 0.2641 (2) 0.4689 (2) 0.3219 (2) 0.0407 (5)
C3 0.3000 (3) 0.4244 (3) 0.2261 (3) 0.0585 (7)
H3A 0.2753 0.4800 0.1596 0.088*
H3B 0.2550 0.3522 0.1946 0.088*
H3C 0.3935 0.4118 0.2610 0.088*
C4 0.4367 (2) 0.71699 (19) 0.4175 (2) 0.0422 (5)
H4A 0.3574 0.7602 0.4036 0.051*
H4B 0.4870 0.7631 0.3847 0.051*
C5 0.5152 (2) 0.70220 (17) 0.55234 (19) 0.0346 (4)
H5 0.4703 0.6486 0.5855 0.042*
C6 0.5404 (3) 0.8149 (2) 0.6198 (3) 0.0550 (7)
H6A 0.6004 0.8029 0.7054 0.082*
H6B 0.4589 0.8458 0.6149 0.082*
H6C 0.5783 0.8689 0.5827 0.082*
C7 0.62054 (19) 0.43482 (16) 0.60765 (18) 0.0283 (4)
C8 0.6405 (2) 0.38220 (19) 0.5148 (2) 0.0392 (5)
H8 0.6988 0.4139 0.4863 0.047*
C9 0.5741 (3) 0.2830 (2) 0.4646 (2) 0.0446 (6)
H9 0.5887 0.2456 0.4023 0.053*
C10 0.4867 (2) 0.23663 (17) 0.5029 (2) 0.0394 (5)
C11 0.4685 (2) 0.29085 (18) 0.5964 (2) 0.0370 (5)
H11 0.4092 0.2597 0.6239 0.044*
C12 0.5354 (2) 0.38931 (17) 0.64963 (19) 0.0325 (4)
H12 0.5233 0.4252 0.7140 0.039*
C13 0.4122 (3) 0.1291 (2) 0.4451 (3) 0.0607 (7)
H13A 0.4379 0.0677 0.5057 0.091*
H13B 0.4311 0.1063 0.3768 0.091*
H13C 0.3195 0.1436 0.4153 0.091*
N1 0.30897 (18) 0.55844 (17) 0.38457 (18) 0.0399 (4)
O1 0.40103 (15) 0.61259 (14) 0.35198 (14) 0.0412 (4)
O2 0.64038 (14) 0.65337 (12) 0.56860 (13) 0.0345 (3)
O3 0.68501 (17) 0.58971 (14) 0.77536 (14) 0.0424 (4)
O4 0.83360 (16) 0.55218 (15) 0.68119 (16) 0.0467 (4)
S1 0.70501 (4) 0.56085 (4) 0.67094 (4) 0.03183 (13)

1 Source of materials

The single crystal suitable for X-ray diffraction was obtained via slowly evaporating the dichloromethane/hexane solution of the title compound.

2 Experimental details

Single-crystal X-ray data for the title compound were collected on a Bruker D8 Venture diffractometer using Bruker APEX2 program 1 at 200 K. The structure of the title compound was solved using Direct Methods and refined with the SHELXTL 2014 program 2 All non-hydrogen atoms were anisotropically refined, and all hydrogen atoms were added theoretically.

3 Comment

Nonlinear optical (NLO) materials have received sustained research attention due to their irreplaceable roles in the field of photonics. 3 8 In particular, organic compounds exhibiting NLO properties possess certain unique advantages, including superior second and third order NLO responses, ultrafast response times, variable structures for adjusting transparency in a wide spectral region, and ease of synthesis and crystal growth. 9 13 Generally, organic NLO compounds feature π-conjugation systems asymmetrized by electron donor or acceptor groups (such as amino-, azo-, halo-, cyano-, hydroxy, sulfo-), which is conducive to their polarization. 9 What’s more, crystallization in a non-centrosymmetric (NCS) space group is the key to the production of NLO responses. Herein, a benzene sulfonate derivative, 1-((propan-2-ylideneamino)oxy)propan-2-yl-4-methylbenzenesulfonate, crystallized in an NCS space group was obtained, and its synthesis, crystal structure, and NLO property are presented.

The title compound has a molecular formula of C13H19O4NS and crystallizes in a monoclinic non-centrosymmetric space group Cc. In the title compound, the acetone oxime fragment and the methylbenzene group are connected by the sulfonic acid ester unit. Generally, if there are two different substituent groups attached to the carbon atom of the C–O ester bond, the larger group may be on the same side as the methylbenzene group or on the opposite side. 14 16 As for the title compound, the acetone oxime fragment and the methylbenzene group are on the same side, and thus the molecular structure of the title compound exhibits an ‘n’ shape. The plane of the acetone oxime is almost parallel to the plane of the toluene with a small dihedral angle of 1.18° and a distance of 3.62 Å.

Because the title compound has the features of organic NLO materials and crystallized in an NCS space group, its NLO property was carefully checked. The second harmonic generation (SHG) of the title compound was measured based on the Kurtz–Perry method using a Q-switched Nd:YAG laser (1064 nm) and KH2PO4 (KDP) was used as the reference. Indeed, the title compound shows obvious SHG response at around 520 nm, which is about 0.2 times of that for KDP. 17 This result indicates that the title compound is a potential organic NLO material.

The method for synthesizing the title compound was according to its analogues, which contains two steps. 18 All chemicals used were received commercially. Firstly, the reaction of acetone oxime (4.32 g, 59.2 mmol) with propylene oxide (3.65 g, 62.8 mmol) in a basic environment (2 % NaOH solution) at room temperature produces the intermediate product propan-2-one O-(2-hydroxypropyl) oxime, which was separated from the above reaction mixture via extraction using dichloromethane. 1H NMR (600 MHz, CDCl3) d:4.16–4.08 (m, 1H), 4.02 (dd, J = 11.7, 2.5 Hz, 1H), 3.87 (dd, J = 11.7, 7.8 Hz, 1H), 3.05 (s, 1H), 1.92–1.88 (m, 6H), 1.19 (dd, J = 12.6, 6.5 Hz, 3H).

The target compound 1-((propan-2-ylideneamino)oxy)propan-2-yl 4-methylbenzenesulfonate was prepared as follows: Tosyl chloride (2.62 g, 20 mmol) in 10 mL of dichloromethane was added dropwise to a mixture of propan-2-one O-(2-hydroxypropyl) oxime (2.62 g, 20 mmol) and triethylamine (2.32 g, 23 mmol) while stirring. After adding the catalyst 4-dimethylaminopyridine (0.18 g, 1.5 mmol), the reaction mixture was stirred at room temperature for 24 h. After that, the reaction mixture was poured into 10 mL of water and the organic layer was separated. The crude product was obtained by evaporating the organic solvent, which was purified via silica gel chromatography using hexane/dichloromethane as the eluent, affording the pure product as a white crystal powder with a yield of 81.3 %. 1H NMR (600 MHz, CDCl3) d 7.82 (d, J = 8.3 Hz, 2H), 7.33 (s, 2H), 4.88 (dd, J = 10.6, 6.8 Hz, 1H), 4.04–3.99 (m, 1H), 3.94 (dd, J = 12.2, 3.8 Hz, 1H), 2.46 (s, 3H), 1.75 (d, J = 48.2 Hz, 6H), 1.33 (d, J = 6.5 Hz, 3H).


Corresponding author: Ran Zhang, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, People’s Republic of China, E-mail:

Acknowledgments

We gratefully acknowledge support by the Ministry of Innovation, Science and Research of North–Rhine Westphalia and the German Research Foundation (DFG) for financial support (Xcalibur diffractometer; INST 208/533–1).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Competing interests: The authors declare no conflicts of interest regarding this article.

  3. Research funding: Ministry of Innovation, Science and Research of North–Rhine Westphalia and the German Research Foundation (DFG) for financial support (Xcalibur diffractometer; INST 208/533–1).

References

1. Bruker. APEX2 (Version 2). Program for Data Collection on Area Detectors; Burker AXS inc.: Madison, Wisconsin, USA, 2012.Suche in Google Scholar

2. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

3. Xing, X.-S.; Sa, R.-J.; Li, P.-X.; Zhang, N.-N.; Zhou, Z.-Y.; Liu, B.-W.; Liu, J.; Wang, M.-S.; Guo, G.-C. Second-order Nonlinear Optical Switching with a Record-High Contrast for a Photochromic and Thermochromic Bistable Crystal. Chem. Sci. 2017, 8, 7751–7757; https://doi.org/10.1039/c7sc01228d.Suche in Google Scholar PubMed PubMed Central

4. Jiao, J.; Zhang, M.; Pan, S. Aluminoborates as Nonlinear Optical Materials. Angew. Chem. 2023, 135, e202217; https://doi.org/10.1002/anie.202217037.Suche in Google Scholar PubMed

5. Bai, S.; Wang, D.; Liu, H. K.; Wang, Y. Recent Advances of Oxyfluorides for Nonlinear Optical Applications. Inorg. Chem. Front. 2021, 8, 1637–1654; https://doi.org/10.1039/d0qi01156h.Suche in Google Scholar

6. Semin, S.; Li, X. Y.; Duan, Y. L.; Rasing, T. Nonlinear Optical Properties and Applications of Fluorenone Molecular Materials. Adv. Opt. Mater. 2021, 9, 2100327; https://doi.org/10.1002/adom.202100327.Suche in Google Scholar

7. Zhou, Y. X.; Huang, Y. Y.; Xu, X. L.; Fan, Z. Y.; Khurgin, J. B.; Xiong, Q. H. Nonlinear Optical Properties of Halide Perovskites and Their Applications. Appl. Phys. Rev. 2020, 7, 041313; https://doi.org/10.1063/5.0025400.Suche in Google Scholar

8. Liu, J.; Duan, Y. M.; Li, Z. H.; Zhang, G.; Zhu, H. Y. Recent Progress in Nonlinear Frequency Conversion of Optical Vortex Lasers. Front. Phys. 2022, 10, 865029; https://doi.org/10.3389/fphy.2022.865029.Suche in Google Scholar

9. Liu, H. K.; Zhang, B. B.; Wang, Y. Second-order Nonlinear Optical Materials with a Benzene-like Conjugated π System. Chem. Commun. 2020, 56, 13689–13701; https://doi.org/10.1039/d0cc05821a.Suche in Google Scholar PubMed

10. Yang, Y.; Zhang, X. Y.; Hu, Z. G.; Wu, Y. C. Organic Nonlinear Optical Crystals for Highly Efficient Terahertz-Wave Generation. Crystals 2023, 13, 144; https://doi.org/10.3390/cryst13010144.Suche in Google Scholar

11. Habeeba, A. A. U.; Saravanan, M.; Girisun, T. C. S.; Anandan, S. Nonlinear Optical Studies of Conjugated Organic Dyes for Optical Limiting Applications. J. Mol. Struct. 2021, 1240, 130559; https://doi.org/10.1016/j.molstruc.2021.130559.Suche in Google Scholar

12. Hu, W.; Xu, X.; Li, Y.; Zhang, M.; Li, S.; Sun, R.; Tang, J.; Shi, Y.; Fan, T. A New Benzothiazolium-Based Organic Nonlinear Optical Material DABT. Physica B Condens. Matter 2023, 657, 414838; https://doi.org/10.1016/j.physb.2023.414838.Suche in Google Scholar

13. Rader, C.; Nielson, M. F.; Knighton, B. E.; Zaccardi, Z. B.; Michaelis, D. J.; Johnson, J. A. Custom Terahertz Waveforms Using Complementary Organic Nonlinear Optical Crystals. Opt. Lett. 2022, 47, 5985–5988; https://doi.org/10.1364/ol.474343.Suche in Google Scholar

14. Ghosh, M.; Mallick, A.; Diaz Diaz, D. Crystal Structure of (2S, 4R)-2-Benzyl 1-Tert-Butyl 4-(tosyloxy)pyrrolidine -1,2-dicarboxylate, C24H29NO7S. Z. Kristallogr. N. Cryst. Struct. 2012, 227, 361–362; https://doi.org/10.1524/ncrs.2012.0173.Suche in Google Scholar

15. Huang, C.; Shi, M.; Liu, J.; Ding, L.; Zhou, J. Crystal Structure of 4-((1,3-Dioxoisoindolin-2-Yl)methyl)phenethyl 4-methylbenzenesulfonate, C24H21NO5S. Z. Kristallogr. N. Cryst. Struct. 2018, 233, 683–684; https://doi.org/10.1515/ncrs-2018-0010.Suche in Google Scholar

16. Tinant, B.; Declercq, J.-P.; Mathieu, B.; Ghosez, L. Crystal Structure of [3-(dimethylphenylsilyl)-6,6-dimethylbicyclo[3.1.1]hept-2-yl]methyl-Toluene-4-Sulfonate, C25H34O3SSi. Z. Kristallogr. N. Cryst. Struct. 2000, 215, 175–177; https://doi.org/10.1515/ncrs-2000-0188.Suche in Google Scholar

17. Kurtz, S. K.; Perry, T. T. A Powder Technique for the Evaluation of Nonlinear Optical Materials. J. Appl. Phys. 1968, 39, 3798–3813; https://doi.org/10.1063/1.1656857.Suche in Google Scholar

18. Rang, H.; Gotz, N.; Harreus, A.; Borchers, D.; Hartmann, H.; Maywald, V.; Heimann, F.; Buschulte, T. Process for the Preparation of Mixtures of Isomers of O-Phenoxyalkeylhydroxylamines or o-Phenoxyalkyloximes. United States Patent 5739402, 1988.Suche in Google Scholar

Received: 2024-04-03
Accepted: 2024-06-02
Published Online: 2024-06-20
Published in Print: 2024-08-27

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Artikel in diesem Heft

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of hexaquazinc(II) poly[hexakis(μ2-4-methylbenzenesulfinato-κ2O:O′) dizinc(II)]
  4. The crystal structure of poly[((2-(4,5-dihydro-1H-pyrazol-4-yl)-1,3-dioxoisoindoline-5-carbonyl)oxy)(1-(dimethylamino)ethoxy)zinc[II]], C16H14ZnN4O5
  5. Crystal structure of bis[(triaqua-4-iodopyridine-2,6-dicarboxylato-κ 3 N,O,O )cobalt(II)] trihydrate, C14H22N2O17I2Co2
  6. Crystal structure of bis(methanol-κO)-bis(nitrato-kO)-bis(1-((2-(2-chloro-4-(4-chlorophenoxy)phenyl)-4-methyl-1,3-dioxolan-2-yl)methyl)-1H-1,2,4-triazole-κN)cadmium(II), C40H42O14N8Cl4Cd
  7. Crystal structure of poly[μ2-dichlorido-(μ2-1-[(2,4-dimethyl-1H-triazole-1-yl)methyl]-1H-benzotriazole-κ2N:N′)cadmium(II)], C11H12CdN6Cl2
  8. The crystal structure of (3aS, 4R, 7S, 7aR)-hexahydro-4, 7-methano-1H-isoindole-1, 3-(2H)-dione, C9H11NO2
  9. The crystal structure of N-(acridin-9-yl)-4-chloro-N-(4-chloro-butanoyl) butanamide, C21H20Cl2N2O2
  10. Crystal structure of 3,3′-dimethoxy-4,4′-oxy-di-benzaldehyde, C16H14O5
  11. The crystal structure of tetrakis(μ 2-2-amino-3,5-dibromobenzoate-κ 2 O:O′)-octakis(n-butyl-κ 1 C)-bis(μ 3-oxo)tetratin(II), C60H92Br8N4O10Sn4
  12. Crystal structure of methyl-1-(naphthalen-1-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b] indole-3-carboxylate, C23H20N2O2
  13. Crystal structure of tetrapropylammonium bicarbonate–1-(diaminomethylene)thiourea(1/1)
  14. Crystal structure of 6,6′-((1E,1′E)-((2-phenylpyrimidine-4,6-diyl)bis(hydrazin-2-yl-1-ylidene))bis(methaneylylidene))bis(2-methoxyphenol)monohydrate, C26H26N6O5
  15. Crystal structure of bis(N,N,N-trimethylbutanaminium) tetrathiotungstate(VI), (BuMe3N)2[WS4]
  16. The crystal structure of 2,3,9-triphenyl-9-(2-phenylbenzofuran-3-yl)-9H-9λ 5-benzo[4,5][1,2]oxaphospholo[2,3-b][1,2,5]oxadiphosphole 2-oxide, C40H28O4P2
  17. Crystal structure of 1–methyl-3-propyl-4-nitro-1H-pyrazole-5-carboxylic acid, C8H11N3O4
  18. Crystal structure of N-(benzo[d]thiazol-2-yl)-2-chloroacetamide, C9H7ClN2OS
  19. The crystal structure of N-benzyl-2-chloro-N-(p-tolyl) acetamide, C16H16ClNO
  20. Crystal structure of 3,4-dimethoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C23H24O5
  21. Crystal structure of 2,5-bis(2,5-dimethoxybenzyl)-3,6-dimethyl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione, C26H28N2O6
  22. Crystal structure of poly[(μ3-5-bromoisophthalato-κ4 O,O′ :O″,O‴)-(μ2-1,2-bis(1,2,4-triazole-1-ylmethyl)benzene-κ2 N:N′)cobalt(II)], C20H15BrCoN6O4
  23. The crystal structure of bis(2-(piperidin-1-ium-4-yl)-1Hbenzo[d]imidazol-3-ium) dihydrogen decavanadate, C24H36N6O28V10
  24. Crystal structure of diaqua-bis(1-(3-carboxyphenyl)-5-methyl-4-oxo-1,4-dihydropyridazine3-carboxylato-O,O′)-cobalt(ii)dihydrate, C26H36N4O14Co
  25. Crystal structure of poly[(μ2-5-bromoisophthalato-κ4 O,O :O ,O )-(μ2-1,4-bis(2-methylimidazol-1-ylmethyl)benzene-N:N)cadmium(II)], C24H21BrCdN4O4
  26. The crystal structure of dimethyl 8-(3-methoxy-2-(methoxycarbonyl)-3-oxoprop-1-en-1-yl)-4-methyl-1-(p-tolyl)-1,3a,4,8b-tetrahydro-3H-furo[3,4-b]indole-3,3-dicarboxylate. C28H29NO9
  27. Crystal structure of (3R)-1-(3,5-dimethoxyphenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate chloride, C21H23ClN2O4
  28. Synthesis and crystal structure of 3-(4,5-dihydroisoxazol-3-yl)-2-methyl-4-(methylsulfonyl)benzoic acid, C12H13NO5S
  29. The crystal structure of hexaaquamagnesium(II) bis-3-(1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-α]pyridin-1-yl)benzoate, C36H42N4O10Mg
  30. Crystal structure of 4-formyl-2-methoxyphenyl 2-acetoxybenzoate, C17H14O6
  31. Crystal structure of poly[octakis(μ-oxido)-tris(μ-1,1′-[[1,1′-biphenyl]-4,4′-diylbis(methylene)]bis(1H-imidazole))-tetrakis(oxido)-tetra-vanadium-dimanganese(II)dihydrate], C30H29MnN6O7V2
  32. Crystal structure of 4,8a-bis(4-chlorophenyl)-1,5,6-tris(4-fluorobenzyl)-1,4,4a,4b,5,6,8a,8b-octahydrocyclobuta[1,2-b:3,4-c′]dipyridine-3,8-dicarbonitrile, C45H33Cl2F3N4
  33. Crystal structure of benzo[d][1,3]dioxol-5-ylmethyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H20O5
  34. Crystal structure of N-benzoyl-N-phenylhydroxylaminato-dicarbonylrhodium(I), [Rh(BNA)CO2]
  35. The crystal structure of N-(2-((2-methoxynaphthalen-1-yl)ethynyl)phenyl)-4-methylbenzenesulfonamide, C26H21NO3S
  36. The crystal structure of methyl ((4-aminobenzyl)sulfonyl)-d-prolinate, C13H18N2O4S
  37. The crystal structure of dichlorido-(N-isopropyl-N-(pyridin-2-ylmethyl)propan-2-amine-κ 2 N, N′)palladium(II), C12H20N2PdCl2
  38. Crystal structure of poly[(μ 2-5-hydroxyisophthalato-κ4 O,O′:O″,O‴)-(μ 2-1,4-bis(2-methylimidazolyl)-1-butene-N:N′)nickel(II)], C20H20NiN4O5
  39. The crystal structure of {hexakis(1-methyl-1H-imidazole-κ 1 N)cobalt(II)}(μ 2-oxido)-hexaoxido-dimolybdenum(VI)— 1-methyl-1H-imidazole (1/2), C32H48CoMo2N16O7
  40. Synthesis, crystal structure and nonlinear optical property of 1-((propan-2-ylideneamino)oxy)propan-2-yl-4-methylbenzenesulfonate, C13H19O4NS
  41. The crystal structure of N,N-(ethane-1,1-diyl)dibenzamide, C16H16N2O2
  42. Crystal structure of 1-(4-bromophenyl)-3-(diphenylphosphoryl)-3-hydroxypropan-1-one, C21H18BrO3P
  43. The crystal structure of fac-tricarbonyl(bis(3,5-dimethyl-4H-pyrazole)-κ1 N)-((nitrato)-κ1 O)-rhenium(I)— 3,5-dimethyl-4H-pyrazole(1/1), C18H23N7O6Re
  44. The crystal structure of 4′-chloro-griseofulvin: (2S,6′R)-4′,7-dichloro-4,6-dimethoxy-6′-methyl-3H-spiro[benzofuran-2,1′-cyclohexan]-3′-ene-2′,3-dione, C16H14Cl2O5
  45. Crystal structure of tetraethylammonium bicarbonate–1-(diaminomethylene)thiourea(1/1)
  46. Crystal structure of 1-cyclohexyl-4-p-tolyl-1,4-dihydropyridine-3,5-dicarboxylic acid dimethyl ester, C22H27NO4
  47. The crystal structure of catena-poly(μ2-1,4-bis-(1H-imidazol-1-yl)benzene-copper(I)) dichloridocopper(I), {[CuC12H10N4]+[CuCl2]} n
  48. The crystal structure of propane-1-aminium-2-carbamate, C4H10N2O2
  49. Crystal structure of 5,6,3′,4′,5′-pentamethoxy-flavone dihydrate, C20H24O9
  50. Crystal structure of (E)-N-(2-bromophenyl)-4-(4-(3,5-dimethoxystyryl)phenoxy)pyrimidin-2-amine, C26H22BrN3O3
  51. Crystal structure of methyl (3R)-1-(2-bromo-4-fluorophenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate hydrochloride hydrate, C19H19BrClFN2O3
  52. The crystal structure of 1-(2-chlorophenyl)-3-(p-tolyl)urea, C14H13ClN2O
  53. The crystal structure of 1-cyclohexyl-3-(p-tolyl)urea, C14H20N2O
  54. Crystal structure of ((benzyl(hydroxy)-amino)(4-chlorophenyl)methyl)-diphenylphosphine oxide, C26H23ClNO2P
  55. The crystal structure of ethyl 3-(1-methyl-1H-indole-2-carbonyl)-2-phenylquinoline-4-carboxylate, C28H22N2O3
  56. The crystal structure of 1,4-bis(1H-imidazol-3-ium-1-yl)benzene dinitrate, C12H12N4 2+·2(NO3 )
  57. Crystal structure of tris(hexafluoroacetylacetonato-κ2O,O′) bis(triphenylphosphine oxide-κ1O)samarium(III), C51H33F18O8P2Sm
  58. Crystal structure of 1-(4-(dimethylamino)phenyl)-2,3-bis(diphenylphosphoryl)propan-1-one, C35H33NO3P2
  59. Crystal structure of diaqua[bis(μ 2-pyridine 2,6-dicarboxylato) bismuth(III) potassium(I)], C14H10BiKN2O10
  60. Crystal structure of (R)-N, N -dimethyl-[1, 1′-binaphthalene]-2, 2′-diamine, C22H20N2
  61. Crystal structure of 1-phenyl-4-(2-furoyl)-3-furyl-1H-pyrazol-5-ol, C18H12N2O4
  62. Crystal structure of bis(14,34-dimethyl[11,21:23,31-terphenyl]-22-yl)diselane, C40H34Se2
Heruntergeladen am 20.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0156/html?licenseType=open-access
Button zum nach oben scrollen