Home Physical Sciences The crystal structure of propane-1-aminium-2-carbamate, C4H10N2O2
Article Open Access

The crystal structure of propane-1-aminium-2-carbamate, C4H10N2O2

  • Yujiu Wu , Yangling Ji , Xusen Gong , Shouwen Jin ORCID logo EMAIL logo and Xinyi Hong
Published/Copyright: June 21, 2024

Abstract

C4H10N2O2, monoclinic, Cc (no. 9), a = 9.5726(8) Å, b = 9.2271(9) Å, c = 7.4577(7) Å, β = 115.295(3)°, V = 595.56(9) Å3, Z = 4, Rgt (F) = 0.0520, wRref (F 2) = 0.1436, T = 298 K .

CCDC no.: 2359316

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.42 × 0.40 × 0.27 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.11 mm−1
Diffractometer, scan mode: φ and ω
θ max, completeness: 25.0°, 99 %
N(hkl)measured, N(hkl)unique, R int: 1378, 966, 0.047
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 818
N(param)refined: 75
Programs: Bruker 1 , SHELX 2 , 3
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso */U eq
C1 0.5973 (4) 0.2412 (4) 0.1157 (5) 0.0370 (9)
H1A 0.5095 0.2322 −0.0146 0.044*
C2 0.7352 (4) 0.1653 (4) 0.1073 (5) 0.0357 (8)
H2D 0.8222 0.1716 0.2366 0.043*
H2E 0.7106 0.0635 0.0782 0.043*
C3 0.6235 (8) 0.4010 (4) 0.1673 (8) 0.0722 (16)
H3A 0.5327 0.4415 0.1718 0.108*
H3B 0.6446 0.4504 0.0683 0.108*
H3C 0.7098 0.4121 0.2944 0.108*
C4 0.7014 (4) 0.1997 (3) −0.2336 (5) 0.0275 (7)
N1 0.7800 (3) 0.2252 (4) −0.0396 (4) 0.0391 (8)
H1 0.8606 0.2795 −0.0004 0.047*
N2 0.5568 (3) 0.1670 (3) 0.2638 (4) 0.0325 (7)
H2A 0.5578 0.0715 0.2475 0.049*
H2B 0.4630 0.1946 0.2471 0.049*
H2C 0.6254 0.1904 0.3855 0.049*
O1 0.7575 (3) 0.2479 (3) −0.3491 (3) 0.0373 (7)
O2 0.5742 (3) 0.1314 (2) −0.2962 (3) 0.0339 (6)

1 Source of materials

In a representative experiment propane-1,2-diamine (7.4 mg, 0.10 mmol) was dissolved in 6 mL of 95 percent ethanol, then the carbon dioxide were bubled into the solution under stirring for 5 min. The solution was filtered into a test tube and left standing at room temperature. After ca. 15 days colorless block crystals were collected.

2 Experimental details

The C-bound H atoms were geometrically placed (C–H = 0.95–0.98 Å) and refined as riding with U iso(H) = 1.2–1.5 U eq(C). The N-bound H atoms were located in a difference Fourier map but were refined with a distance restraint of N–H = 0.86–0.89 Å, and with U iso(H) set to 1.2 U equiv(N). 1 3

3 Comment

Organic acid-base salt has always been a hotspot of crystal engineering that can afford an alternative but efficient way for enhancing the physicochemical properties of a target molecule. 4 Meanwhile, salts are also known as the paradise of the material science. 5 Therefore, organic salts have attracted considerable interest and found their potential application in various fields of pharmaceutical, 6 energetic, 7 and photovoltaics industries. 8 In this case, salts derived from the organic carboxylic acid and a range of nitrogenous bases of organic amine has been explored widely. 9 Yet the carbonate salts of the organic bases were rare 10 in comparison with other organic carboxylic acids derived organic salts on account of its relative weak acidity. Although reactions of CO2 with the primary and secondary amines, including the cyclic ones and those resulting in the salts of the amine and the corresponding carbamic acid, have been reported, they usually produce powder or amorphous solids. A few single crystal structures of the ammonium carbamate self-derivative salts of several amines have been documented. 11 18 The reported crystal structures demonstrate that in many cases half of the molecules retain the amine group while the remaining half form a carbamate moiety resulting from the carbonation of the amino group. To the best of our knowledge, there were some reports on the salts of propane-1,2-diamine. 19

During the carbonation, the 2-amine form a carbamic acid via the addition reaction with the carbon dioxide, the 1-amine acted as the hydrogen bond acceptor for the H from the carbamic acid to form the carbonated adduct, resembling the zwitterionic piperazinium-4-carboxamide trihydrate. 20 In the asymmetric unit there existed a propane-1-aminium-2-carbamate (Figure 1). The O(1)–C(4)/C(4)–O(2) (1.275(4)/1.269(4) Å) are almost equal to each other within the experimental error with the minor difference of 0.006 Å, telling the equal distribution of the negative charge on both the O atoms and supporting the existence of the carbamate. All the H attached to the N atoms were involved in the N–H⋯O hydrogen bond, the both O atoms at the carboxylate each had two N–H⋯O hydrogen bonds. The zwitterionic propane-1-aminium-2-carbamate were linked by the N–H⋯O hydrogen bond of 2.733(4) % A from one H of the NH 3 + and one O at the CO 2 , establishing 1D chain. The chains were joined together by the N–H⋯O hydrogen bond of 2.801(4) Å from the second H of the NH 3 + and the same O at the CO 2 as the above N–H⋯O hydrogen bond, N–H⋯O hydrogen bond of 2.934(4) Å from the H of the NH CO 2 and the other O at the CO 2 , and the CH2–CH contact with the C–C/H–H = 3.988/2.145 Å to establish the 2D sheet located in the crystallographic ac plane. The sheets were stacked in the crystallographic b-cell by the N–H⋯O hydrogen bond of 2.806(3) Å from the third H of the NH 3 + and one O at the CO 2 , CH2–O contact of 3.367 Å from the CH2 linker and the CO 2 , and the CH2–C contact of 3.631 Å from the CH2 linker and the CO 2 to make 3D net. The net enclosed the R 2 1 (6), R 3 3 (10), and R 3 2 (14) rings according to Bernstein 21 .


Corresponding author: Shouwen Jin, Jiyang College, ZheJiang A & F University, Zhu’Ji 311800, P.R. China, E-mail:

  1. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  2. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Research funding: Scientific Research Fund of Zhejiang Provincial Natural Science Foundation of China under Grant No. LY14B010006, and Jiyang 533 project RC2022F01 for Shouwen Jin.

References

1. SMART and SAINT for Windows NT Software Reference Manuals Version 5.0; Bruker Analytical X-ray Systems: Madison, WI, 1997.Search in Google Scholar

2. Sheldrick, G. M. SADABS, A Software for Empirical Absorption Correction; University of Göttingen: Göttingen, Germany, 1997.Search in Google Scholar

3. SHELXL Reference Manual, Version 5.1; Bruker Analytical X-ray Systems: Madison, WI, 1997.Search in Google Scholar

4. Samipillai, M.; Rohani, S. The Role of Higher Coformer Stoichiometry Ratio in Pharmaceu Tical Cocrystals for Improving Their Solid-State Properties: The Cocrystals of Progesterone and 4-Hydroxybenzoic Acid. J. Cryst. Growth 2019, 507, 270–282. https://doi.org/10.1016/j.jcrysgro.2018.10.050.Search in Google Scholar

5. Ganie, A. A.; Ismail, T. M.; Sajith, P. K.; Dar, A. A. Validation of the Supramolecular Synthon Preference through DFT and Physicochemical Property Investigations of Pyridyl Salts of Organo-Sulfonates. New J. Chem. 2021, 45, 4780–4790. https://doi.org/10.1039/d0nj05485b.Search in Google Scholar

6. Batisai, E. Multicomponent Crystals of Anti-tuberculosis Drugs: a Mini-Review. RSC Adv. 2020, 10, 37134. https://doi.org/10.1039/d0ra06478e.Search in Google Scholar PubMed PubMed Central

7. Liu, W.; Liu, W. L.; Pang, S. P. Structures and Properties of Energetic Cations in Energetic Salts. RSC Adv. 2017, 7, 3617–3627. https://doi.org/10.1039/c6ra26032b.Search in Google Scholar

8. Bates, M.; Richard, R. Organic Salt Photovoltaics. Sustain. Energy Fuels 2017, 1, 955–968. https://doi.org/10.1039/c7se00142h.Search in Google Scholar

9. Damayanti, J. D.; Pratama, D. E.; Lee, T. Green Technology for Salt Formation: Slurry Reactive Crystallization Studies for Papaverine HCl and 1:1 Haloperidol-Maleic Acid Salt. Cryst. Growth Des. 2019, 19, 2881–2891. https://doi.org/10.1021/acs.cgd.9b00098.Search in Google Scholar

10. Nowakowska, M.; Gamble, C.; Levendis, D. C. Bis(adamantan-1-aminium) Carbonate. Acta Crystallogr. 2012, E68, o1159. https://doi.org/10.1107/s1600536812011828.Search in Google Scholar

11. Allen, F. H. The Cambridge Structural Database: A Quarter of a Million Crystal Structures and Rising. Acta Crystallogr. 2002, B58, 380–388. https://doi.org/10.1107/s0108768102003890.Search in Google Scholar PubMed

12. Von Dreele, R. B.; Bradshaw, R. L.; Burke, W. J. Structure of Morpholinium 4-Morpholinecarboxylate, C4H10NO+C5H8NO3−. Acta Crystallogr. 1983, C39, 253–255. https://doi.org/10.1107/s0108270183004308.Search in Google Scholar

13. Freytag, M.; Jones, P. G. Hydrogen Bonding in Two Piperidinium Derivatives. Acta Crystallogr. 1999, C55, 1874–1877. https://doi.org/10.1107/s0108270199009567.Search in Google Scholar

14. Jiang, H.; Novak, I. Piperidine-CO2–H2O Molecular Complex. J. Mol. Struct. 2003, 645, 177–183. https://doi.org/10.1016/s0022-2860(02)00545-8.Search in Google Scholar

15. Mondal, R.; Bhunia, M. K. Crystal Chemistry of 1:1 Molecular Complexes of Carbamate Salts Formed by Slow Aerial Carbonation of Amines. J. Chem. Crystallogr. 2008, 38, 787–792. https://doi.org/10.1007/s10870-008-9391-1.Search in Google Scholar

16. Aresta, M.; Ballivet–Tkatchenko, D.; Belli Dell’Amico, D.; Bonnet, M. C.; Boschi, D.; Calderazzo, F.; Faure, R.; Labella, L.; Marchetti, F. Isolation and Structural Determination of Two Derivatives of the Elusive Carbamic Acid. Chem. Commun. 2000, 1099–1100. https://doi.org/10.1039/b002479l.Search in Google Scholar

17. Meijide, F.; Antelo, A.; Alvarez, M.; Soto, V. H.; Trillo, J. V.; Jover, A.; Tato, J. V. Spontaneous Formation in the Solid State of Carbamate Derivatives of Bile Acids. Cryst. Growth Des. 2011, 11, 356–361. https://doi.org/10.1021/cg101424a.Search in Google Scholar

18. Heimgert, J.; Neumann, D.; Reiss, G. J. (3-Ammonio-2,2-dimethyl-propyl)Carbamate Dihydrate. Molbank 2018, 2018, M1015. https://doi.org/10.3390/M1015.Search in Google Scholar

19. Aghabozorg, H.; Heidari, M.; Ghadermazi, M.; Attar Gharamaleki, J. Propane-1,2-Diammonium Bis(6-Carboxypyridine-2-Carboxylate) Dihydrate. Acta Crystallogr. 2008, E64, o1045–o1046. https://doi.org/10.1107/s1600536808013263.Search in Google Scholar PubMed PubMed Central

20. Fonari, M. S.; Antal, S.; Castñeda, R.; Ordonez, C.; Timofeeva, T. V. Crystalline Products of CO2 Capture by Piperazine Aqueous Solutions. CrystEngComm 2016, 18, 6282–6289. https://doi.org/10.1039/c6ce01083k.Search in Google Scholar

21. Bernstein, J.; Davis, R. E.; Shimoni, L.; Chang, N. L. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angew. Chem. Int. Ed. 1995, 34, 1555–1573. https://doi.org/10.1002/anie.199515551.Search in Google Scholar

Received: 2024-04-25
Accepted: 2024-05-30
Published Online: 2024-06-21
Published in Print: 2024-08-27

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of hexaquazinc(II) poly[hexakis(μ2-4-methylbenzenesulfinato-κ2O:O′) dizinc(II)]
  4. The crystal structure of poly[((2-(4,5-dihydro-1H-pyrazol-4-yl)-1,3-dioxoisoindoline-5-carbonyl)oxy)(1-(dimethylamino)ethoxy)zinc[II]], C16H14ZnN4O5
  5. Crystal structure of bis[(triaqua-4-iodopyridine-2,6-dicarboxylato-κ 3 N,O,O )cobalt(II)] trihydrate, C14H22N2O17I2Co2
  6. Crystal structure of bis(methanol-κO)-bis(nitrato-kO)-bis(1-((2-(2-chloro-4-(4-chlorophenoxy)phenyl)-4-methyl-1,3-dioxolan-2-yl)methyl)-1H-1,2,4-triazole-κN)cadmium(II), C40H42O14N8Cl4Cd
  7. Crystal structure of poly[μ2-dichlorido-(μ2-1-[(2,4-dimethyl-1H-triazole-1-yl)methyl]-1H-benzotriazole-κ2N:N′)cadmium(II)], C11H12CdN6Cl2
  8. The crystal structure of (3aS, 4R, 7S, 7aR)-hexahydro-4, 7-methano-1H-isoindole-1, 3-(2H)-dione, C9H11NO2
  9. The crystal structure of N-(acridin-9-yl)-4-chloro-N-(4-chloro-butanoyl) butanamide, C21H20Cl2N2O2
  10. Crystal structure of 3,3′-dimethoxy-4,4′-oxy-di-benzaldehyde, C16H14O5
  11. The crystal structure of tetrakis(μ 2-2-amino-3,5-dibromobenzoate-κ 2 O:O′)-octakis(n-butyl-κ 1 C)-bis(μ 3-oxo)tetratin(II), C60H92Br8N4O10Sn4
  12. Crystal structure of methyl-1-(naphthalen-1-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b] indole-3-carboxylate, C23H20N2O2
  13. Crystal structure of tetrapropylammonium bicarbonate–1-(diaminomethylene)thiourea(1/1)
  14. Crystal structure of 6,6′-((1E,1′E)-((2-phenylpyrimidine-4,6-diyl)bis(hydrazin-2-yl-1-ylidene))bis(methaneylylidene))bis(2-methoxyphenol)monohydrate, C26H26N6O5
  15. Crystal structure of bis(N,N,N-trimethylbutanaminium) tetrathiotungstate(VI), (BuMe3N)2[WS4]
  16. The crystal structure of 2,3,9-triphenyl-9-(2-phenylbenzofuran-3-yl)-9H-9λ 5-benzo[4,5][1,2]oxaphospholo[2,3-b][1,2,5]oxadiphosphole 2-oxide, C40H28O4P2
  17. Crystal structure of 1–methyl-3-propyl-4-nitro-1H-pyrazole-5-carboxylic acid, C8H11N3O4
  18. Crystal structure of N-(benzo[d]thiazol-2-yl)-2-chloroacetamide, C9H7ClN2OS
  19. The crystal structure of N-benzyl-2-chloro-N-(p-tolyl) acetamide, C16H16ClNO
  20. Crystal structure of 3,4-dimethoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C23H24O5
  21. Crystal structure of 2,5-bis(2,5-dimethoxybenzyl)-3,6-dimethyl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione, C26H28N2O6
  22. Crystal structure of poly[(μ3-5-bromoisophthalato-κ4 O,O′ :O″,O‴)-(μ2-1,2-bis(1,2,4-triazole-1-ylmethyl)benzene-κ2 N:N′)cobalt(II)], C20H15BrCoN6O4
  23. The crystal structure of bis(2-(piperidin-1-ium-4-yl)-1Hbenzo[d]imidazol-3-ium) dihydrogen decavanadate, C24H36N6O28V10
  24. Crystal structure of diaqua-bis(1-(3-carboxyphenyl)-5-methyl-4-oxo-1,4-dihydropyridazine3-carboxylato-O,O′)-cobalt(ii)dihydrate, C26H36N4O14Co
  25. Crystal structure of poly[(μ2-5-bromoisophthalato-κ4 O,O :O ,O )-(μ2-1,4-bis(2-methylimidazol-1-ylmethyl)benzene-N:N)cadmium(II)], C24H21BrCdN4O4
  26. The crystal structure of dimethyl 8-(3-methoxy-2-(methoxycarbonyl)-3-oxoprop-1-en-1-yl)-4-methyl-1-(p-tolyl)-1,3a,4,8b-tetrahydro-3H-furo[3,4-b]indole-3,3-dicarboxylate. C28H29NO9
  27. Crystal structure of (3R)-1-(3,5-dimethoxyphenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate chloride, C21H23ClN2O4
  28. Synthesis and crystal structure of 3-(4,5-dihydroisoxazol-3-yl)-2-methyl-4-(methylsulfonyl)benzoic acid, C12H13NO5S
  29. The crystal structure of hexaaquamagnesium(II) bis-3-(1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-α]pyridin-1-yl)benzoate, C36H42N4O10Mg
  30. Crystal structure of 4-formyl-2-methoxyphenyl 2-acetoxybenzoate, C17H14O6
  31. Crystal structure of poly[octakis(μ-oxido)-tris(μ-1,1′-[[1,1′-biphenyl]-4,4′-diylbis(methylene)]bis(1H-imidazole))-tetrakis(oxido)-tetra-vanadium-dimanganese(II)dihydrate], C30H29MnN6O7V2
  32. Crystal structure of 4,8a-bis(4-chlorophenyl)-1,5,6-tris(4-fluorobenzyl)-1,4,4a,4b,5,6,8a,8b-octahydrocyclobuta[1,2-b:3,4-c′]dipyridine-3,8-dicarbonitrile, C45H33Cl2F3N4
  33. Crystal structure of benzo[d][1,3]dioxol-5-ylmethyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H20O5
  34. Crystal structure of N-benzoyl-N-phenylhydroxylaminato-dicarbonylrhodium(I), [Rh(BNA)CO2]
  35. The crystal structure of N-(2-((2-methoxynaphthalen-1-yl)ethynyl)phenyl)-4-methylbenzenesulfonamide, C26H21NO3S
  36. The crystal structure of methyl ((4-aminobenzyl)sulfonyl)-d-prolinate, C13H18N2O4S
  37. The crystal structure of dichlorido-(N-isopropyl-N-(pyridin-2-ylmethyl)propan-2-amine-κ 2 N, N′)palladium(II), C12H20N2PdCl2
  38. Crystal structure of poly[(μ 2-5-hydroxyisophthalato-κ4 O,O′:O″,O‴)-(μ 2-1,4-bis(2-methylimidazolyl)-1-butene-N:N′)nickel(II)], C20H20NiN4O5
  39. The crystal structure of {hexakis(1-methyl-1H-imidazole-κ 1 N)cobalt(II)}(μ 2-oxido)-hexaoxido-dimolybdenum(VI)— 1-methyl-1H-imidazole (1/2), C32H48CoMo2N16O7
  40. Synthesis, crystal structure and nonlinear optical property of 1-((propan-2-ylideneamino)oxy)propan-2-yl-4-methylbenzenesulfonate, C13H19O4NS
  41. The crystal structure of N,N-(ethane-1,1-diyl)dibenzamide, C16H16N2O2
  42. Crystal structure of 1-(4-bromophenyl)-3-(diphenylphosphoryl)-3-hydroxypropan-1-one, C21H18BrO3P
  43. The crystal structure of fac-tricarbonyl(bis(3,5-dimethyl-4H-pyrazole)-κ1 N)-((nitrato)-κ1 O)-rhenium(I)— 3,5-dimethyl-4H-pyrazole(1/1), C18H23N7O6Re
  44. The crystal structure of 4′-chloro-griseofulvin: (2S,6′R)-4′,7-dichloro-4,6-dimethoxy-6′-methyl-3H-spiro[benzofuran-2,1′-cyclohexan]-3′-ene-2′,3-dione, C16H14Cl2O5
  45. Crystal structure of tetraethylammonium bicarbonate–1-(diaminomethylene)thiourea(1/1)
  46. Crystal structure of 1-cyclohexyl-4-p-tolyl-1,4-dihydropyridine-3,5-dicarboxylic acid dimethyl ester, C22H27NO4
  47. The crystal structure of catena-poly(μ2-1,4-bis-(1H-imidazol-1-yl)benzene-copper(I)) dichloridocopper(I), {[CuC12H10N4]+[CuCl2]} n
  48. The crystal structure of propane-1-aminium-2-carbamate, C4H10N2O2
  49. Crystal structure of 5,6,3′,4′,5′-pentamethoxy-flavone dihydrate, C20H24O9
  50. Crystal structure of (E)-N-(2-bromophenyl)-4-(4-(3,5-dimethoxystyryl)phenoxy)pyrimidin-2-amine, C26H22BrN3O3
  51. Crystal structure of methyl (3R)-1-(2-bromo-4-fluorophenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate hydrochloride hydrate, C19H19BrClFN2O3
  52. The crystal structure of 1-(2-chlorophenyl)-3-(p-tolyl)urea, C14H13ClN2O
  53. The crystal structure of 1-cyclohexyl-3-(p-tolyl)urea, C14H20N2O
  54. Crystal structure of ((benzyl(hydroxy)-amino)(4-chlorophenyl)methyl)-diphenylphosphine oxide, C26H23ClNO2P
  55. The crystal structure of ethyl 3-(1-methyl-1H-indole-2-carbonyl)-2-phenylquinoline-4-carboxylate, C28H22N2O3
  56. The crystal structure of 1,4-bis(1H-imidazol-3-ium-1-yl)benzene dinitrate, C12H12N4 2+·2(NO3 )
  57. Crystal structure of tris(hexafluoroacetylacetonato-κ2O,O′) bis(triphenylphosphine oxide-κ1O)samarium(III), C51H33F18O8P2Sm
  58. Crystal structure of 1-(4-(dimethylamino)phenyl)-2,3-bis(diphenylphosphoryl)propan-1-one, C35H33NO3P2
  59. Crystal structure of diaqua[bis(μ 2-pyridine 2,6-dicarboxylato) bismuth(III) potassium(I)], C14H10BiKN2O10
  60. Crystal structure of (R)-N, N -dimethyl-[1, 1′-binaphthalene]-2, 2′-diamine, C22H20N2
  61. Crystal structure of 1-phenyl-4-(2-furoyl)-3-furyl-1H-pyrazol-5-ol, C18H12N2O4
  62. Crystal structure of bis(14,34-dimethyl[11,21:23,31-terphenyl]-22-yl)diselane, C40H34Se2
Downloaded on 20.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0183/html
Scroll to top button