Home Physical Sciences The crystal structure of N,N-(ethane-1,1-diyl)dibenzamide, C16H16N2O2
Article Open Access

The crystal structure of N,N-(ethane-1,1-diyl)dibenzamide, C16H16N2O2

  • Zhen-Xiang Liu ORCID logo , Zheng-Ye Yu , Hui Mao , Tai-Jin Cheng and Hang-Cheng Ni EMAIL logo
Published/Copyright: May 27, 2024

Abstract

C16H16N2O2, orthorhombic, P212121 (no. 19), a = 9.370(2) Å, b = 10.265(2) Å, c = 15.863(4) Å, V = 1525.8(6) Å3, Z = 4, R gt(F) = 0.0753, wRref (F 2) = 0.198, T = 273 K.

CCDC no.: 2344511

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless needle
Size: 0.17 × 0.09 × 0.05 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.08 mm−1
Diffractometer, scan mode: Bruker Smart APEX II, φ and ω
θ max, completeness: 27.7°, >99 %
N(hkl)measured, N(hkl)unique, R int: 9355, 3563, 0.130
Criterion for I obs, N(hkl)gt: I obs > 2σ (I obs), 1447
N(param)refined: 183
Programs: SHELX, 1 , 2 Diamond, 3 Olex2 4
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
O1 −0.2036 (5) −0.3318 (4) 0.1104 (3) 0.0617 (12)
O2 −0.2076 (5) −0.0706 (4) −0.0148 (3) 0.0594 (12)
N2 0.0208 (6) −0.1357 (4) −0.0276 (3) 0.0520 (13)
H2 0.0964 −0.1414 −0.0603 0.062*
N1 0.0213 (5) −0.3261 (4) 0.0611 (3) 0.0477 (13)
H1 0.0964 −0.3718 0.0458 0.057*
C1 −0.1789 (9) −0.5986 (7) 0.1434 (5) 0.075 (2)
H1A −0.2360 −0.5509 0.1801 0.090*
C2 −0.1818 (11) −0.7340 (7) 0.1455 (6) 0.096 (3)
H2A −0.2398 −0.7766 0.1843 0.115*
C3 −0.0992 (12) −0.8051 (8) 0.0905 (6) 0.097 (3)
H3 −0.1020 −0.8956 0.0918 0.116*
C4 −0.0124 (11) −0.7420 (8) 0.0336 (5) 0.091 (3)
H4 0.0442 −0.7897 −0.0033 0.109*
C5 −0.0100 (9) −0.6075 (6) 0.0317 (4) 0.069 (2)
H5 0.0474 −0.5650 −0.0075 0.083*
C6 −0.0918 (7) −0.5350 (6) 0.0871 (4) 0.0503 (16)
C7 −0.0968 (8) −0.3892 (6) 0.0861 (4) 0.0472 (15)
C8 0.0292 (7) −0.1846 (6) 0.0591 (4) 0.0503 (16)
H8 −0.0517 −0.1495 0.0909 0.060*
C9 0.1666 (8) −0.1372 (6) 0.1001 (4) 0.068 (2)
H9A 0.1684 −0.1639 0.1581 0.102*
H9B 0.1709 −0.0438 0.0970 0.102*
H9C 0.2470 −0.1738 0.0711 0.102*
C10 −0.1000 (8) −0.0823 (6) −0.0586 (4) 0.0499 (15)
C11 −0.0986 (7) −0.0380 (6) −0.1481 (4) 0.0485 (15)
C12 −0.0061 (8) −0.0883 (7) −0.2079 (4) 0.068 (2)
H12 0.0601 −0.1519 −0.1931 0.081*
C13 −0.0134 (9) −0.0427 (8) −0.2899 (5) 0.085 (2)
H13 0.0474 −0.0768 −0.3307 0.102*
C14 −0.1103 (11) 0.0529 (8) −0.3116 (5) 0.088 (3)
H14 −0.1130 0.0846 −0.3665 0.106*
C15 −0.2021 (11) 0.1008 (7) −0.2525 (6) 0.088 (3)
H15 −0.2698 0.1628 −0.2677 0.106*
C16 −0.1949 (9) 0.0578 (7) −0.1707 (5) 0.073 (2)
H16 −0.2551 0.0934 −0.1303 0.087*

1 Source of materials

Benzamide (0.3 mmol, 36.3 mg) and ferric chloride (2.4 mg, 5 %) were added into a 10 mL screw-cap bottle, air in the screw-cap bottle was replaced with nitrogen via a Schlenk apparatus, then a tert-butyl hydroperoxide (0.9 mmol, 165 μL) solution (3 mL, diethyl ether:acetonitrile = 1:1) was added using a syringe. Then, the above reaction bottle was placed under a LED lamp of 20 W (wavelength = 450–455 nm) for illumination for 20 h. After completion of the reaction, the reaction solution was extracted three times with ethyl acetate and water, and an obtained mixture was dried and concentrated and subjected to chromatography using a silica gel column (an eluent was petroleum ether:ethyl acetate = 5:1 to 2:1), and 14 mg of product I was obtained with a yield of 35 %.

The crystal was prepared using a volatile compound saturated solution method. Specific preparation steps were as follows. 0.27 g (about 1 mmol) of the title compound was dissolved in 10 mL of dichloromethane to obtain a colorless transparent solution, then the colorless transparent solution was stood at room temperature (20 °C to 40 °C) for natural volatilization. A colorless transparent needle single crystal at the bottom of a cup was the crystal of the geminal diamide compound.

2 Experimental details

Single-crystal X-ray diffraction measurements were carried out on a Rigaku Mercury CCD diffractometer at low temperature. After absorption correction, the crystal structure was solved using the Olex2 software 1 and the programs SHELXT 2 program and refined with SHELXL. 3 All hydrogens were generated geometrically (C–H bond fixed at 0.96 Å), and allowed to ride on their parent carbon atoms.

3 Comment

Diamides are a type of amides which contain two amide functional groups that are interconnected to each other via a single methylene bridge. They are a powerful but rare class of compounds. 5 Due to their unique chemical properties, bisamides have garnered widespread interest in the fields of organic synthesis, drug development, and materials science. In materials science, bisamides may be utilized in the development of novel polymeric materials or functional materials owing to their distinctive physicochemical properties. 6 8

These compounds are typically synthesized through condensation reactions between compounds with active hydrogen, such as benzamides or aldehydes. The title compound was prepared by heating the aldehyde and acetamide to generate corresponding products, 9 the related compounds and the same methods were reported with different catalysts, such as triflic acid, 10 fuoroalkanesulfonic acid, 11 p–toluene sulfonic acid, 12 B(HSO4)3, 13 reusable hydroxyapatite. 14 We have innovated the synthetic method by employing a green photocatalytic approach, utilizing the inexpensive ferric chloride as a photocatalyst, to directly react amides with ethers under visible light irradiation, achieving the synthesis of gem-diamide compounds efficiently.

In the title structure, a C1–C6 benzene ring plane and a C11–C16 benzene ring plane forms an included angle of 48.8°. There are two intermolecular hydrogen bonding interactions involving the amino N and the corresponding carboxylate oxygen O in neighboring molecules with bond lengths of NH⋯O ranging from 2.84–2.92 Å which is basically consistent with the literature. 15


Corresponding author: Hang-Cheng Ni, Pharmaceutical College Jinhua Polytechnic, Zhejiang 321017, P.R. China, E-mail:

Award Identifier / Grant number: 2020-1-003a and 2021-3-150

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by Research Projects from Jinhua Science and Technology Bureau (2020-1-003a and 2021-3-150).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Sheldrick, G. M. SHELXTL – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

2. Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

3. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System. Ver. 0; Crystal Impact: Bonn, Germany, 2015.Search in Google Scholar

4. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

5. Schaefer, G., Leu. L., Bode, J. W. Synthesis of Unsymmetrical, Gem-Disubstituted Bisamides. Heterocycles 2015, 90, 1375–1386; https://doi.org/10.3987/COM-14-S(K)89.Search in Google Scholar

6. Zhang, Y.; Zhou, D. H.; Ma, Y. M.; Chen, J. DMSO-Mediated Synthesis of Methylene-Bridged Unsymmetrical Bisamides in the Presence of AcOH. Synthesis 2020, 52, 297–303; https://doi.org/10.1055/s-0039-1690031.Search in Google Scholar

7. Rather, I. A.; Ali, R. Investigating the Role of Natural Deep Eutectic Low Melting Mixtures for the Synthesis of Symmetrical Bisamides. ChemistrySelect 2021, 6, 10948–10956; https://doi.org/10.1002/slct.202103104.Search in Google Scholar

8. Wang, Y. Y.; Dang, X. L.; Du, M.; Zhao, M. M.; Tang, W. Q. Crystal Structure of 3,4-Bis[2-(Hydroxymethyl)-Pyrrolidin-1-Yl] Cyclobut-3-Ene-1,2-Dione Hydrate, C14H22N2O5. Z. Kristallogr. N. Cryst. Struct. 2024, 239, 247–248; https://doi.org/10.1515/ncrs-2023-0509.Search in Google Scholar

9. Miroslaw, S.; Dorota, J.; Zbigniew, S. Synthesis of 1-Aminoalkylphosphonic Acids via Amidoalkylation of Phosphorous Acid by N,N′-Alkylidenebisamides. Liebigs Ann. Chem. 1990, 11, 1153–1155.10.1002/jlac.1990199001211Search in Google Scholar

10. Herrera Fernández, A.; Martínez Alvarez, R.; Morales Abajo, T. Improved Synthesis of Symmetrical N,N′-Alkylidene Bisamides. Synthesis 1996, 11, 1299–1301; https://doi.org/10.1055/s-1996-4385.Search in Google Scholar

11. Zhu, S. Z.; Xu, G. L.; Chu, Q. L.; Xu, Y.; Qui, C. Y. Synthesis of Fluorine-Containing Symmetrical N,N-Alkylidene Bisamides. J. Fluorine Chem. 1999, 93, 69–71; https://doi.org/10.1016/s0022-1139(98)00286-3.Search in Google Scholar

12. Anary-Abbasinejad, M.; Mosslemin, M. H.; Hassanabadi, A.; Safa, S. T. p–Toluene Sulfonic Acid–Catalyzed, Solvent-Free Synthesis of Symmetrical Bisamides by Reaction Between Aldehydes and Amides. Synth. Commun. 2010, 40, 2209–2214; https://doi.org/10.1080/00397910903219617.Search in Google Scholar

13. Zahed, K. J.; Baharak, P. A Mild, Efficient, and Environmentally Friendly Synthesis of N,N′-Arylidene Bisamides Using B(HSO4)3 Under Solvent-Free Conditions. Monatsh. Chem. 2013, 144, 659–663; https://doi.org/10.1007/s00706-012-0848-8.Search in Google Scholar

14. Gurusamy, R.; Ramachandran, S.; Mayilvasagam, K.; Palsamy, G.; Thirumeni, S. Efficient Synthesis of Symmetrical Bisamides Catalyzed by Reusable Hydroxyapatite. Synth. Commun. 2018, 48, 216–222; https://doi.org/10.1080/00397911.2017.1395888.Search in Google Scholar

15. Clarke, H. J.; Van Rossom, W.; Horton, P. N.; Light, M. E.; Gale, P. A. Anion Transport and Binding Properties of N,N′-(Phenylmethylene)Dibenzamide Based Receptors. Supramol. Chem. 2016, 28, 1–10; https://doi.org/10.1080/10610278.2015.1034126.Search in Google Scholar

Received: 2024-04-04
Accepted: 2024-05-07
Published Online: 2024-05-27
Published in Print: 2024-08-27

© 2024 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of hexaquazinc(II) poly[hexakis(μ2-4-methylbenzenesulfinato-κ2O:O′) dizinc(II)]
  4. The crystal structure of poly[((2-(4,5-dihydro-1H-pyrazol-4-yl)-1,3-dioxoisoindoline-5-carbonyl)oxy)(1-(dimethylamino)ethoxy)zinc[II]], C16H14ZnN4O5
  5. Crystal structure of bis[(triaqua-4-iodopyridine-2,6-dicarboxylato-κ 3 N,O,O )cobalt(II)] trihydrate, C14H22N2O17I2Co2
  6. Crystal structure of bis(methanol-κO)-bis(nitrato-kO)-bis(1-((2-(2-chloro-4-(4-chlorophenoxy)phenyl)-4-methyl-1,3-dioxolan-2-yl)methyl)-1H-1,2,4-triazole-κN)cadmium(II), C40H42O14N8Cl4Cd
  7. Crystal structure of poly[μ2-dichlorido-(μ2-1-[(2,4-dimethyl-1H-triazole-1-yl)methyl]-1H-benzotriazole-κ2N:N′)cadmium(II)], C11H12CdN6Cl2
  8. The crystal structure of (3aS, 4R, 7S, 7aR)-hexahydro-4, 7-methano-1H-isoindole-1, 3-(2H)-dione, C9H11NO2
  9. The crystal structure of N-(acridin-9-yl)-4-chloro-N-(4-chloro-butanoyl) butanamide, C21H20Cl2N2O2
  10. Crystal structure of 3,3′-dimethoxy-4,4′-oxy-di-benzaldehyde, C16H14O5
  11. The crystal structure of tetrakis(μ 2-2-amino-3,5-dibromobenzoate-κ 2 O:O′)-octakis(n-butyl-κ 1 C)-bis(μ 3-oxo)tetratin(II), C60H92Br8N4O10Sn4
  12. Crystal structure of methyl-1-(naphthalen-1-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b] indole-3-carboxylate, C23H20N2O2
  13. Crystal structure of tetrapropylammonium bicarbonate–1-(diaminomethylene)thiourea(1/1)
  14. Crystal structure of 6,6′-((1E,1′E)-((2-phenylpyrimidine-4,6-diyl)bis(hydrazin-2-yl-1-ylidene))bis(methaneylylidene))bis(2-methoxyphenol)monohydrate, C26H26N6O5
  15. Crystal structure of bis(N,N,N-trimethylbutanaminium) tetrathiotungstate(VI), (BuMe3N)2[WS4]
  16. The crystal structure of 2,3,9-triphenyl-9-(2-phenylbenzofuran-3-yl)-9H-9λ 5-benzo[4,5][1,2]oxaphospholo[2,3-b][1,2,5]oxadiphosphole 2-oxide, C40H28O4P2
  17. Crystal structure of 1–methyl-3-propyl-4-nitro-1H-pyrazole-5-carboxylic acid, C8H11N3O4
  18. Crystal structure of N-(benzo[d]thiazol-2-yl)-2-chloroacetamide, C9H7ClN2OS
  19. The crystal structure of N-benzyl-2-chloro-N-(p-tolyl) acetamide, C16H16ClNO
  20. Crystal structure of 3,4-dimethoxybenzyl 2-(6-methoxynaphthalen-2-yl)propanoate, C23H24O5
  21. Crystal structure of 2,5-bis(2,5-dimethoxybenzyl)-3,6-dimethyl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione, C26H28N2O6
  22. Crystal structure of poly[(μ3-5-bromoisophthalato-κ4 O,O′ :O″,O‴)-(μ2-1,2-bis(1,2,4-triazole-1-ylmethyl)benzene-κ2 N:N′)cobalt(II)], C20H15BrCoN6O4
  23. The crystal structure of bis(2-(piperidin-1-ium-4-yl)-1Hbenzo[d]imidazol-3-ium) dihydrogen decavanadate, C24H36N6O28V10
  24. Crystal structure of diaqua-bis(1-(3-carboxyphenyl)-5-methyl-4-oxo-1,4-dihydropyridazine3-carboxylato-O,O′)-cobalt(ii)dihydrate, C26H36N4O14Co
  25. Crystal structure of poly[(μ2-5-bromoisophthalato-κ4 O,O :O ,O )-(μ2-1,4-bis(2-methylimidazol-1-ylmethyl)benzene-N:N)cadmium(II)], C24H21BrCdN4O4
  26. The crystal structure of dimethyl 8-(3-methoxy-2-(methoxycarbonyl)-3-oxoprop-1-en-1-yl)-4-methyl-1-(p-tolyl)-1,3a,4,8b-tetrahydro-3H-furo[3,4-b]indole-3,3-dicarboxylate. C28H29NO9
  27. Crystal structure of (3R)-1-(3,5-dimethoxyphenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate chloride, C21H23ClN2O4
  28. Synthesis and crystal structure of 3-(4,5-dihydroisoxazol-3-yl)-2-methyl-4-(methylsulfonyl)benzoic acid, C12H13NO5S
  29. The crystal structure of hexaaquamagnesium(II) bis-3-(1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-α]pyridin-1-yl)benzoate, C36H42N4O10Mg
  30. Crystal structure of 4-formyl-2-methoxyphenyl 2-acetoxybenzoate, C17H14O6
  31. Crystal structure of poly[octakis(μ-oxido)-tris(μ-1,1′-[[1,1′-biphenyl]-4,4′-diylbis(methylene)]bis(1H-imidazole))-tetrakis(oxido)-tetra-vanadium-dimanganese(II)dihydrate], C30H29MnN6O7V2
  32. Crystal structure of 4,8a-bis(4-chlorophenyl)-1,5,6-tris(4-fluorobenzyl)-1,4,4a,4b,5,6,8a,8b-octahydrocyclobuta[1,2-b:3,4-c′]dipyridine-3,8-dicarbonitrile, C45H33Cl2F3N4
  33. Crystal structure of benzo[d][1,3]dioxol-5-ylmethyl 2-(6-methoxynaphthalen-2-yl)propanoate, C22H20O5
  34. Crystal structure of N-benzoyl-N-phenylhydroxylaminato-dicarbonylrhodium(I), [Rh(BNA)CO2]
  35. The crystal structure of N-(2-((2-methoxynaphthalen-1-yl)ethynyl)phenyl)-4-methylbenzenesulfonamide, C26H21NO3S
  36. The crystal structure of methyl ((4-aminobenzyl)sulfonyl)-d-prolinate, C13H18N2O4S
  37. The crystal structure of dichlorido-(N-isopropyl-N-(pyridin-2-ylmethyl)propan-2-amine-κ 2 N, N′)palladium(II), C12H20N2PdCl2
  38. Crystal structure of poly[(μ 2-5-hydroxyisophthalato-κ4 O,O′:O″,O‴)-(μ 2-1,4-bis(2-methylimidazolyl)-1-butene-N:N′)nickel(II)], C20H20NiN4O5
  39. The crystal structure of {hexakis(1-methyl-1H-imidazole-κ 1 N)cobalt(II)}(μ 2-oxido)-hexaoxido-dimolybdenum(VI)— 1-methyl-1H-imidazole (1/2), C32H48CoMo2N16O7
  40. Synthesis, crystal structure and nonlinear optical property of 1-((propan-2-ylideneamino)oxy)propan-2-yl-4-methylbenzenesulfonate, C13H19O4NS
  41. The crystal structure of N,N-(ethane-1,1-diyl)dibenzamide, C16H16N2O2
  42. Crystal structure of 1-(4-bromophenyl)-3-(diphenylphosphoryl)-3-hydroxypropan-1-one, C21H18BrO3P
  43. The crystal structure of fac-tricarbonyl(bis(3,5-dimethyl-4H-pyrazole)-κ1 N)-((nitrato)-κ1 O)-rhenium(I)— 3,5-dimethyl-4H-pyrazole(1/1), C18H23N7O6Re
  44. The crystal structure of 4′-chloro-griseofulvin: (2S,6′R)-4′,7-dichloro-4,6-dimethoxy-6′-methyl-3H-spiro[benzofuran-2,1′-cyclohexan]-3′-ene-2′,3-dione, C16H14Cl2O5
  45. Crystal structure of tetraethylammonium bicarbonate–1-(diaminomethylene)thiourea(1/1)
  46. Crystal structure of 1-cyclohexyl-4-p-tolyl-1,4-dihydropyridine-3,5-dicarboxylic acid dimethyl ester, C22H27NO4
  47. The crystal structure of catena-poly(μ2-1,4-bis-(1H-imidazol-1-yl)benzene-copper(I)) dichloridocopper(I), {[CuC12H10N4]+[CuCl2]} n
  48. The crystal structure of propane-1-aminium-2-carbamate, C4H10N2O2
  49. Crystal structure of 5,6,3′,4′,5′-pentamethoxy-flavone dihydrate, C20H24O9
  50. Crystal structure of (E)-N-(2-bromophenyl)-4-(4-(3,5-dimethoxystyryl)phenoxy)pyrimidin-2-amine, C26H22BrN3O3
  51. Crystal structure of methyl (3R)-1-(2-bromo-4-fluorophenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate hydrochloride hydrate, C19H19BrClFN2O3
  52. The crystal structure of 1-(2-chlorophenyl)-3-(p-tolyl)urea, C14H13ClN2O
  53. The crystal structure of 1-cyclohexyl-3-(p-tolyl)urea, C14H20N2O
  54. Crystal structure of ((benzyl(hydroxy)-amino)(4-chlorophenyl)methyl)-diphenylphosphine oxide, C26H23ClNO2P
  55. The crystal structure of ethyl 3-(1-methyl-1H-indole-2-carbonyl)-2-phenylquinoline-4-carboxylate, C28H22N2O3
  56. The crystal structure of 1,4-bis(1H-imidazol-3-ium-1-yl)benzene dinitrate, C12H12N4 2+·2(NO3 )
  57. Crystal structure of tris(hexafluoroacetylacetonato-κ2O,O′) bis(triphenylphosphine oxide-κ1O)samarium(III), C51H33F18O8P2Sm
  58. Crystal structure of 1-(4-(dimethylamino)phenyl)-2,3-bis(diphenylphosphoryl)propan-1-one, C35H33NO3P2
  59. Crystal structure of diaqua[bis(μ 2-pyridine 2,6-dicarboxylato) bismuth(III) potassium(I)], C14H10BiKN2O10
  60. Crystal structure of (R)-N, N -dimethyl-[1, 1′-binaphthalene]-2, 2′-diamine, C22H20N2
  61. Crystal structure of 1-phenyl-4-(2-furoyl)-3-furyl-1H-pyrazol-5-ol, C18H12N2O4
  62. Crystal structure of bis(14,34-dimethyl[11,21:23,31-terphenyl]-22-yl)diselane, C40H34Se2
Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0157/html
Scroll to top button