Home The crystal structure of hexaquamagnesium(II) (2,4-bis(nitroimino)-6-oxo-1,3,5-triazinane-1,3-diide), C3H15MgN7O12
Article Open Access

The crystal structure of hexaquamagnesium(II) (2,4-bis(nitroimino)-6-oxo-1,3,5-triazinane-1,3-diide), C3H15MgN7O12

  • Zhang Tong ORCID logo , Zhang Guangyuan , Xu Zishuai , Ruan Jian , Chen Lizhen and Wang Jianlong EMAIL logo
Published/Copyright: February 25, 2022

Abstract

C3H15MgN7O12, triclinic, P 1 (no. 2), a = 6.7755(2) Å, b = 9.8181(3) Å, c = 11.0775(4) Å, α = 87.717(1)°, β = 78.297(1)°, γ = 70.804(1)°, V = 681.18(4) Å3, Z = 2, R gt (F) = 0.0382, wR ref (F2) = 0.1083, T = 150 K.

CCDC no.: 2150098

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.15 × 0.08 × 0.05 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.22 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 26.4°, 99%
N(hkl)measured, N(hkl)unique, Rint: 7889, 2764, 0.048
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 2312
N(param)refined: 254
Programs: bruker [1], olex2 [2], shelx [3, 4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 0.1820 (3) 0.7322 (2) 0.36908 (17) 0.0153 (4)
C2 0.2217 (3) 0.5746 (2) 0.52792 (17) 0.0155 (4)
C3 0.2750 (3) 0.4789 (2) 0.33499 (17) 0.0164 (4)
Mg1 0.000000 1.000000 0.000000 0.0169 (2)
Mg2 0.500000 0.000000 0.500000 0.0146 (2)
N1 0.3313 (3) 0.36344 (19) 0.14408 (15) 0.0212 (4)
N2 0.3306 (3) 0.35623 (18) 0.26493 (14) 0.0190 (4)
N3 0.2291 (3) 0.61431 (18) 0.29133 (14) 0.0170 (4)
H3 0.229239 0.627339 0.212261 0.020*
N4 0.1801 (3) 0.71038 (17) 0.49019 (14) 0.0157 (4)
N5 0.2698 (3) 0.45627 (18) 0.45367 (14) 0.0165 (4)
N6 0.2370 (3) 0.53186 (18) 0.64601 (14) 0.0188 (4)
N7 0.1627 (3) 0.63085 (18) 0.73760 (14) 0.0172 (4)
O1 0.1430 (2) 0.85441 (15) 0.32470 (12) 0.0194 (3)
O2 0.2805 (3) 0.47627 (17) 0.08750 (14) 0.0394 (5)
O3 0.3885 (3) 0.24276 (16) 0.08801 (13) 0.0243 (4)
O4 0.0433 (2) 0.75537 (15) 0.73265 (12) 0.0215 (3)
O5 0.2183 (3) 0.58509 (16) 0.83835 (13) 0.0284 (4)
O6 0.3661 (3) 0.19554 (15) 0.59358 (13) 0.0208 (3)
H6A 0.343867 0.264577 0.540987 0.031*
H6B 0.363 (5) 0.214 (3) 0.666 (3) 0.037 (8)*
O7 0.6597 (3) −0.08785 (19) 0.63872 (14) 0.0242 (4)
H7A 0.676 (6) −0.178 (4) 0.669 (3) 0.068 (11)*
H7B 0.759 (7) −0.079 (5) 0.633 (4) 0.075 (14)*
O8 0.2430 (3) −0.05715 (16) 0.59161 (13) 0.0188 (3)
H8A 0.239700 −0.134522 0.556204 0.028*
H8B 0.128 (5) 0.003 (3) 0.612 (3) 0.041 (9)*
O9 −0.2444 (2) 1.05290 (17) 0.14956 (13) 0.0217 (3)
H9A −0.366 (4) 1.102 (3) 0.134 (3) 0.061 (11)*
H9B −0.240 (5) 1.068 (3) 0.2242 (18) 0.054 (9)*
O10 0.0417 (2) 0.78440 (15) 0.03811 (13) 0.0214 (3)
H10A 0.084438 0.730360 −0.031320 0.032*
H10B −0.083008 0.772620 0.071282 0.032*
O11 0.6807 (3) 0.71875 (18) 0.16128 (14) 0.0248 (4)
H11A 0.610 (4) 0.740 (3) 0.101 (3) 0.053 (9)*
H11B 0.700 (5) 0.630 (4) 0.165 (3) 0.052 (10)*
O12 0.2294 (2) 0.98520 (17) 0.10325 (13) 0.0211 (3)
H12A 0.234 (5) 0.934 (3) 0.167 (2) 0.037 (8)*
H12B 0.240 (5) 1.064 (2) 0.127 (3) 0.046 (9)*

Source of material

Dissolve 0.5 g 4,6-dinitrosamino-1,3,5-triazine-2-one (DNAM) into 200 ml of water, react with 0.2 g Mg(OH)2 for half an hour, and use distillation under reduced pressure to remove 2/3 of the water. Finally evaporated at room temperature to obtain crystals suitable for X-ray diffraction.

Experimental details

Hydrogen atoms were placed in plausible positions and constrained to ride on their parent atoms.

Comment

Triazine have the advantages of high density, high positive enthalpy of generation and good thermal stability. They can be used as gas generating agents, solid propellant fuels, and pyrotechnic agents [5, 6]. DNAM, prepared by one-step nitrification of melamine, is a triazine-containing material with good performance parameters [7], [8], [9], [10].

As shown in the figure, the crystal structure of the title compound is formed by DNAM after removing two hydrogen atoms as anions and hexaaqua magnesium complexes as cations. All bond length and bond angles are in the normal range [11]. Compared with the DNAM crystal structure, the bond length and angle are slightly changed. The dihedral angle between the nitro group N7-O5-O4 and the azine ring is increased from 10.05° to 24.80°, and the dihedral angle between the nitro group N1-O2-O3 and the azine ring is reduced from 10.05° to 5.14°.


Corresponding author: Wang Jianlong, School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, Shanxi Province, P. R. China, E-mail:

Acknowledgements

We thank the Center of Testing and Analysis, Shanghai Institute, for support.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. BRUKER. SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2009.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

5. Ye, C., Gao, H., Boatz, J. A. Polyazido pyrimidines: high-energy compounds and precursors to carbon nanotubes. Angew. Chem. Int. Ed. 2006, 45, 7262–7265; https://doi.org/10.1002/anie.200602778.Search in Google Scholar

6. Fischer, A., Antonietti, M., Thomas, A. Growth confined by the nitrogen source: synthesis of pure metal nitride nanoparticles in mesoporous graphitic carbon nitride. Adv. Mater. 2007, 19, 264–267; https://doi.org/10.1002/adma.200602151.Search in Google Scholar

7. Simões, P., Pedroso, L., Portugal, A. New propellant component, part I. study of 4,6-dinitroamino-1,3,5-triazine-2(1H)-one (DNAM). Propellants Explos. Pyrotech. 2001, 26, 273–277.10.1002/1521-4087(200112)26:6<273::AID-PREP273>3.0.CO;2-0Search in Google Scholar

8. Cason, J. The nitration of melamine and of triacetylmelamine. J. Am. Chem. Soc. 1947, 73, 495–498; https://doi.org/10.1021/ja01195a005.Search in Google Scholar

9. Portugal, A., Campos, J., Simões, P. Energetic materials – synthesis and development of insensitive and green compounds. In Defense Industries: Science and Technology Related to Security: Impact of Conventional Munitions on Environment and Population. NATO Science Series; Branco, P. C., Schubert, H., Campos, J., Eds.; Springer: Dordrecht, Netherland, Vol. 44, 2004; pp. 209–220.10.1007/978-1-4020-2795-6_12Search in Google Scholar

10. Sul, M., Kim, M., Kim, J. Synthesis of a nitrogen-rich insensitive energetic material, DNAM (Dinitroammeline). J. Korean Soc. Propul. Eng. 2016, 20, 50–57; https://doi.org/10.6108/kspe.2016.20.1.050.Search in Google Scholar

11. Simões, P. N., Pedroso, L. M., Beja, A. M. M., Silva, M. R., MacLean, E., Portugal, A. A. Crystal and molecular structure of 4,6-bis(nitroimino)-1,3,5- triazinan-2-one: theoretical and X-ray studies. J. Phys. Chem. A 2007, 111, 150–158; https://doi.org/10.1021/jp064473p.Search in Google Scholar

Received: 2022-01-08
Accepted: 2022-02-04
Published Online: 2022-02-25
Published in Print: 2022-04-26

© 2022 Zhang Tong et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of {2,2′-{cyclohexane-1,2-diylbis[(azanylylidene)methylylidene]}bis(2,4-dibromophenolato)-κ4 N,N′,O,O′}copper(II) ─ diethylformamide (1/1), C23H23Br4CuN3O3
  4. The crystal structure of 2-(2-methyl-6-phenyl-4H-pyran-4-ylidene)-1H-indene-1,3(2H)-dione, C21H14O3
  5. Crystal structure of bis((1-methylbenzimidazol-2-yl)methyl)amine, C18H19N5
  6. Crystal structure of (E)-N′-(1-(2-hydroxy-4-methoxyphenyl)ethylidene) isonicotinohydrazide, C15H15N3O3
  7. Crystal structure of 2-((4-phenyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)thio)acetonitrile, C15H11N5S
  8. The crystal structure of 2,2′-((1E,1′E)-hydrazine-1,2-diylidenebis(methaneylylidene))bis(4-chlorophenol), C14H10Cl2N2O2
  9. Dichlorido-{2,6-bis(4,5-dihydro-1H-pyrazol-3-yl)pyridine-κ3 N,N′,N″}zinc(II), C11H9C12N5Zn
  10. The crystal structure of dichlorido-(2-((4-phenyl-2H-1,2,3-triazol-2-yl)methyl)pyridine-κ2N,N′)palladium(II), C14H12Cl2N4Pd
  11. The crystal structure of 1-(N1-benzyl-2-methyl-4-nitro-imidazol-5-yl)-4-(prop-2-yn-1-yl) piperazine, C18H21N5O2
  12. Crystal structure of (μ4-(1,2,4,5-tetra(1,2,4-triazol-1-ylmethyl)-benzene-κ4N:N1:N2:N3)disilver(I) diperchlorate
  13. The crystal structure of 1-(2-bromoethane)-4-amine-3,5-dinitropyrazole, C5H6Br1N5O4
  14. Crystal structure of (E)-1-(4-benzyl-3,5-dioxomorpholin-2-ylidene)ethyl acetate, C15H15N1O5
  15. The crystal structure of poly[diaqua-(μ2-1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ2N:N′)-bis(μ3-terephthalato-κ3O:O′:O′′)dicadmium(II)], C17H15N6O5Cd
  16. Crystal structure of (E)-N′-(1-(5-chloro-2-hydroxyphenyl) ethylidene)thiophene-2-carbohydrazide, C13H11ClN2O2S
  17. The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylato-k2 N,O)cobalt(II)]-monohydrate, C36H26N4O5Co
  18. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-3-hydroxybenzo-hydrazide monohydrate, C14H13ClN2O4
  19. Crystal structure of 1,1′-(methylene)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S:S)nickel(II), C42H30N14Ni2S8
  20. Crystal structure of 1,1′-(1,2-ethanediyl)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S:S)nickel(II), C20H14N6NiS4
  21. The crystal structure of 1-methyl-1H-pyrazol-2-ium nitrate, C4H7O3N3
  22. The crystal structure of 4,4′-diselanediylbis(8-(hexyloxy)-3,6-dimethyl-1-(piperidin-1-yl)isoquinoline-7-carbonitrile), C46H60N6O2Se2
  23. The crystal structure of tris(6-methylpyridin-2-yl)phosphine selenide, C18H18N3PSe
  24. The crystal structure of 1,2-bis(2,4-dinitro-1H-imidazol-1-yl)ethane ─ acetone (1/1), C11H12N8O9
  25. Crystal structure of [diaqua[2,2′-(1,2-phenylene)bis(1H-imidazole-4-carboxylato-5-carboxy)-κ4N,N′,O,O′]nickel(II)] tetrahydrate, C16H12N4NiO10·4H2O
  26. The crystal structure of tris(4-methyl-1H-pyrazol-1-yl)methane, C13H16N6
  27. The crystal structure of 5,6-dichloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H8Cl2N2O2
  28. Crystal structure of (E)-(2-methoxy-benzylidene)-(4-[1,2,4]triazol-1-yl-phenyl)-amine, C16H14N4O
  29. The crystal structure of (Z)-2-(4-(4-bromophenyl)thiazol-2-yl)-4-(3-hydroxybut-2-enoyl)-5-methyl -1,2-dihydro-3H-pyrazol-3-one – methanol (1/1), C18H18N3O4S
  30. Crystal structure of tetraaqua-tris(nitrato-κ2 O,O′) erbium(III) monohydrate, Er(NO3)3·5H2O, H10ErN3O14
  31. The crystal structure of 1-methyl-2-nitro-1H-imidazole 3-oxide, C4H5N3O3
  32. The crystal structure of 1-methyl-2-nitroimidazole, C4H5N3O2
  33. The crystal structure of 2-carboxyl-4-nitroimidazole monohydrate, C4H5N3O5
  34. Crystal structure of bis[hydrido-hexaphenylcarbodiphosphoran][tetra-trifluoromethyl-(μ-diiodo)-diplatinat]
  35. The crystal structure of poly[μ2-aqua- aqua-(μ3-(E)-2-(4-((2-carbamothioylhydrazineylidene)methyl)phenoxy)acetato-κ3 O:S:S)sodium(I)], C10H14N3O5SNa
  36. The twinned crystal structure of [4,4′-bipyridine]-1,1′-diium hexachloridostannate(IV), C10H10N2SnCl6
  37. The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylate-k2 N,O)copper(II)], C34H24N4O4Cu
  38. Crystal structure of trans-1,2-bis(pyridinium-4-yl) ethylene bis(2-carboxy-4-bromobenzoate) – water (1/4), C14H14BrNO6
  39. Crystal structure of poly[diaqua-(μ3-fumarato)-(μ3-maleato)-(μ4-1,2,4,5-tetrakis((1H-1,2,4-triazol-1-yl)methyl)benzene)tetracadmium(II)] dihydrate, C34H32N12O9Cd4
  40. Crystal structure of a second modification of Pachypodol, C18H16O7
  41. Crystal structure of methyl 2-(4-(2-(cyclopentyl-amino)-1-(N-(4-methoxyphenyl)-1-methyl-5-phenyl-1-H-pyrazole-3-carboxamido)-2-oxoethyl)phenyl)acetate, C34H36N4O5
  42. The crystal structure of catena-poly[(m2-4,4′-bipyridine-κ2 N:N)-bis(6-phenylpyridine-2-carboxylato-κ2 N,O) zinc(II)], C34H24N4O4Zn
  43. The crystal structure of hexaquamagnesium(II) (2,4-bis(nitroimino)-6-oxo-1,3,5-triazinane-1,3-diide), C3H15MgN7O12
  44. The crystal structure of 7-Bromo-2-(4-chloro-phenyl)-quinoxaline, C14H9BrClN2
  45. Crystal structure of methyl 4-{[4-(4-cyanobenzamido)phenyl]amino}benzofuro[2,3-d]pyrimidine-6-carboxylate, C26H17N5O4
  46. The crystal structure of (4SR)-7-(3,4-dichlorobenzyl)-4,8,8-trimethyl-7,8-dihydroimidazo[5,1c][1,2,4]triazine-3,6(2H,4H)-dione, C15H16Cl2N4O2
  47. Crystal structure of catena-poly[{μ2-3-carboxy-2,3-bis((4-methylbenzoyl)oxy)propanoato-κ2 O:O′}tris(methanol-κ1 O)lanthanum(III)], C63H63LaO27
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2022-0005/html?lang=en
Scroll to top button