Abstract
C10H10N2SnCl6, monoclinic, I2/a (no. 15), a = 7.4941(3) Å, b = 12.8731(4) Å, c = 15.8688(5) Å, β = 93.042(3)°, Z = 4, V = 1528.73(9) Å3, R gt (F) = 0.0264, wR ref = 0.0485, T = 100 K.
A selected region of the hydrogen bonded layered title crystal structure is shown in the figure with view along [−100]. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Data collection and handling.
Crystal: | Colorless block |
Size: | 0.20 × 0.15 × 0.12 mm |
Wavelength: | Mo Kα radiation (0.71073 Å) |
μ: | 2.71 mm−1 |
Diffractometer, scan mode: | Xcalibur, ω |
θ max, completeness: | 27.6°, >99% |
N(hkl)measured, N(hkl)unique: | 3193, 3193 |
Criterion for I obs, N(hkl)gt: | I obs > 2 σ(I obs), 2334 |
N(param)refined: | 105 |
Programs: | CrysAlisPRO [1], Nespolo [2], SHELX [3], [4], [5], Diamond [6] |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).
Atom | x | y | z | U iso*/U eq |
---|---|---|---|---|
Sn1 | 0.250000 | 0.250000 | 0.250000 | 0.01118 (8) |
Cl1 | 0.29832 (11) | 0.26028 (6) | 0.40446 (4) | 0.01923 (18) |
Cl2 | 0.10352 (11) | 0.41644 (5) | 0.25078 (4) | 0.01688 (17) |
Cl3 | −0.03375 (11) | 0.16763 (6) | 0.26519 (5) | 0.02192 (18) |
N1 | 0.750000 | 0.5090 (3) | 0.500000 | 0.0208 (9) |
H1N | 0.750000 | 0.5728 (19) | 0.500000 | 0.025* |
N2 | 0.750000 | −0.0305 (3) | 0.500000 | 0.0186 (9) |
H2N | 0.750000 | −0.0962 (19) | 0.500000 | 0.022* |
C1 | 0.8004 (5) | 0.4588 (3) | 0.4309 (2) | 0.0196 (7) |
H1 | 0.840 (5) | 0.499 (3) | 0.388 (2) | 0.024* |
C2 | 0.8016 (5) | 0.3523 (2) | 0.42975 (19) | 0.0159 (7) |
H2 | 0.839 (5) | 0.317 (2) | 0.383 (2) | 0.019* |
C3 | 0.750000 | 0.2966 (3) | 0.500000 | 0.0130 (10) |
C4 | 0.750000 | 0.1815 (3) | 0.500000 | 0.0131 (9) |
C5 | 0.6980 (5) | 0.1257 (2) | 0.42720 (19) | 0.0154 (7) |
H5 | 0.656 (5) | 0.157 (2) | 0.378 (2) | 0.018* |
C6 | 0.6982 (5) | 0.0197 (3) | 0.4286 (2) | 0.0183 (7) |
H6 | 0.663 (5) | −0.015 (3) | 0.386 (2) | 0.022* |
Source of material
All chemicals were obtained from commercial sources and used as purchased. The title compound was synthesized by dissolving 0.156 g (1 mmol) 4,4′-bipyridine in 1 mL concentrated hydrochloric acid and adding an equivalent amount of SnCl4 (0.262 g; 1 mmol). Short-time warming until complete dissolution of both components yielded a colorless solution. From the aforementioned solution colorless block crystals grew at room temperature within a few days.
Experimental details
All screened crystals of the title compound were directly selected from the mother liquor and rapidly transferred to the Xcalibur four-circle diffractometer equipped with an EOS detector [1]. An absorption correction (Multi-Scan method) was applied [1]. All investigated crystals suffer from the same non-merohedral twinning (Twin law: 180° about (−0.03 0.00 1.00) in the reciprocal space; 180° about the vector 0.00 0.00 1.00 in the direct space; twin matrix −1.00 0.00 −0.05 0.00 −1.00 0.00 0.00 0.00 1.00). Finally we used a crystal with a large primary component (refined twin ratio: 0.8212(5)/0.1788(5) [1, 2, 4]).
The structure solution and the refinement were successfully carried out using the SHELX program system [3], [4], [5]. All hydrogen atoms were located in the difference electron density map after all non-hydrogen atoms were located. The maximum residual peak of 1.43 e Å−3 is located near Sn1 (0.78 Å). The figure was created using the Diamond software [6].
Comment
Introduction
There is a continuing interest in the structural chemistry of hydrogen bonded [4,4′-bipyridine]-1,1′-diium (bipyH2) salts [7]. Furthermore these salts may be applied to catalysis etc. [8, 9]. We have already shown that heterocyclic cations like some bipyridinium salts [10, 11] and salts based on α, ω-diaminium-alkanes are excellent tectons to construct hydrogen bonded networks [12]. The [SnCl6]2− counterion used for this study is a bulky, medium-strong hydrogen-bond acceptor, which is used by us [13], [14], [15], [16] and many other groups [17], [18], [19], [20]. The title structure is very similar to those reported for the following compounds: bipyH2[MCl6]; M = Pt, Os [21]. Some more related salts based on (bipyH2) cations and [MCl6]2− M = Pu [22], U [23] have been reported. This contribution is part of our longstanding interest in the structures and hydrogen-bonding schemes of hexahalogenidometallates [24], [25], [26].
Structural comments
The asymmetric unit of the title compound consists of a) one half of a [4,4′-bipyridine]-1,1′-diium (bipyH2) dication locate on the twofold axis (Wyckoff site: 4e); b) one half of a [SnCl6]2− anion located on an inversion center (Wyckoff site: 4d). Bond lengths and angles within the bipyH2 cation are all in the expected ranges [7, 10, 27], [28], [29]. The same is true for the [SnCl6]2− anion [13], [14], [15], [16], [17], [18], [19], [20]. In detail, the conformation of the bipyH2 dication is characterized by the dihedral angle of −37.7(3)° for C2–C3–C4–C5. The Sn–Cl distances in the [SnCl6]2− anion range from 2.3997(8)–2.4621(6) Å and the cis-angles are in the narrow range of 89.20(3)–90.80(3)°. As expected, the longest Sn–Cl bond length is associated with Cl1, which is involved in two classical hydrogen bonds (see the figure with view against [001]). The other chlorido ligands of the [SnCl6]2− anion are not involved in any classical hydrogen bonds. This finding came as no surprise, as the large number of hydrogen bond acceptor atoms of the [SnCl6]2− anion only has to be related to one bipyH2 dication in this AB salt compound. Each bipyH2 cation is connected to four neighboring [SnCl6]2− anions by four weak bifurcated N–H⃛Cl hydrogen bonds (see the figure; N1⃛Cl1 3.367(5) Å). Thus each mesh of the hydrogen-bonded net consists of two cations and two anions creating the typical 2D network known for this class of structures [21].
Group-subgroup relation
There is a translationengleiche group-subgroup relation between the title structure and the structure of the related compounds crystallizing in the space group Ibam (no. 72.): bipyH2[MCl6] for M = Pt, Os. For these aristotype structures the bipyH2 is located around a 222 site (0.5, 0, 0.25; Wyckoff symbol: 4b), whereas the [MCl6]2− anion is located on a 2/m site (0, 0, 0; Wyckoff symbol: 4c). The symmetry reduction to the title structure (I2/a) requires a origin shift (0.25, 0.25, 0.25) and leads to the following occupancies: the bipyH2 is located on the twofold axis (0.75, y, 0.5; with y near 0.25; Wyckoff symbol: 4e); the [SnCl6]2− anion is located on the inversion center (0.25, 0.25, 0.25; Wyckoff symbol: 4d) [30, 31]. A detailed comparison shows that the bipyH2 cation approximately restores the orientation within the packing known from the aristotype structures. Thus the deviation from the aristotype is mainly caused by a mutual tilt of the [SnCl6]2− anions (see the figure). This tilting leads to a slightly longer Cl⃛Cl distance (3.155 Å) than that found in the aristotype structure of bipyH2[OsCl6] (3.106 Å) [21].
Funding source: Ministry of Innovation, Science and Research of North-Rhine Westphalia
Funding source: German Research Foundation
Award Identifier / Grant number: INST 208/533-1
Award Identifier / Grant number: 162659349
Funding source: Heinrich-Heine-Universität Düüsseldorf
Award Identifier / Grant number: ULBD-21-7653
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This study was financially supported by the Ministry of Innovation, Science and Research of North-Rhine Westphalia and the German Research Foundation (DFG) (Xcalibur diffractometer; INST 208/533-1, project no. 162659349). Funding by the open access fund of the Heinrich-Heine-Universität Düsseldorf is also gratefully acknowledged (ULBD-21-7653).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Oxford Diffraction. CrysAlisPRO (version1.171.33.42); Oxford Diffraction Ltd.: Oxford, UK, 2009.Search in Google Scholar
2. Nespolo, N. Does mathematical crystallography still have a role in the XXI century? Acta Crystallogr. A 2008, 64, 96–111; https://doi.org/10.1107/s0108767307044625.Search in Google Scholar
3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed
4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar
5. Hübschle, C. B., Sheldrick, G. M., Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284.10.1107/S0108767319098143Search in Google Scholar
6. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System (ver. 5.2); Crystal Impact: Bonn, Germany, 2018.Search in Google Scholar
7. Dorn, T., Janiak, C., Abu-Shandi, K. Hydrogen-bonding, π-stacking and Cl–anion–π interactions of linear bipyridinium cations with phosphate, chloride and [CoCl4]2− anions. CrystEngComm 2005, 7, 633–641; https://doi.org/10.1039/b508944a.Search in Google Scholar
8. Yarie, M., Zolfigol, M. A., Baghery, S., Alonso, D. A., Khoshnood, A., Kalhor, M., Bayat, Y., Asgari, A. Design and preparation of [4,4′-bipyridine]-1,1′-diium trinitromethanide (BPDTNM) as a novel nanosized ionic liquid catalyst: application to the synthesis of 1-(benzoimidazolylamino)methyl-2-naphthols. New J. Chem. 2017, 41, 4431–4440; https://doi.org/10.1039/c6nj04074h.Search in Google Scholar
9. Novo, P., García, M. D., Peinador, C., Pazos, E. Reversible control of DNA Binding with cucurbit[8]uril-Induced supramolecular 4,4′-bipyridinium peptide dimers. Bioconjugate Chem. 2021, 32, 507–511; https://doi.org/10.1021/acs.bioconjchem.1c00063.Search in Google Scholar PubMed
10. Reiss, G. J., Megen van, M. Two new polyiodides in the 4,4′-bipyridinium diiodide/iodine system. Z. Naturforsch. B Chem. Sci. 2012, 67, 5–10; https://doi.org/10.1515/znb-2012-0102.Search in Google Scholar
11. Megen van, M., Frank, W., Reiss, G. J. A detailed comparative structural study of the hydrogen bonded networks in solids, obtained by the reaction of 4,4′-bipyridine and varied alkane-α,ω-diphosphonic acids. CrystEngComm 2016, 18, 3574–3584; https://doi.org/10.1039/C5CE02156A.Search in Google Scholar
12. Megen van, M., Reiss, G. J. l62- Anion composed of two asymmetric triiodide moieties: a competition between halogen and hydrogen bond. Inorganics 2013, 1, 3–13; https://doi.org/10.3390/inorganics1010003.Search in Google Scholar
13. Megen van, M., Prömper, S., Reiss, G. J. Bis(3-azaniumylpyridin-1-ium) hexachloridostannate(IV) dichloride. Acta Crystallogr. E 2013, 69, m217; https://doi.org/10.1107/s1600536813006806.Search in Google Scholar PubMed PubMed Central
14. Reiss, G. J., Helmbrecht, C. Bis(diisopropylammonium) hexachloridostannate(IV). Acta Crystallogr. E 2021, 68, m1402–m1403; https://doi.org/10.1107/S1600536812043371.Search in Google Scholar PubMed PubMed Central
15. Lambertz, C., Luppa, A., Reiss, G. J. Crystal structure of bis((dimethylphosphoryl)methanaminium) hexachloridostannate(IV), C6H22Cl6N2O2P2Sn. Z. Kristallogr. N. Cryst. Struct. 2013, 228, 227–228; https://doi.org/10.1524/ncrs.2013.0113.Search in Google Scholar
16. Reiss, G. J., Wyshusek, M. The layered crystal structure of bis(theophyllinium) hexachloridostannate (IV), C14H18N8O8SnCl6. Z. Kristallogr. NCS 2021, 236, 989–992. https://doi.org/10.1515/ncrs-2021-0185.Search in Google Scholar
17. Szafrański, M., Ståahl, K. Phase transitions in layered diguanidinium hexachlorostannate (IV). Cryst. Growth Des. 2016, 16, 2157–2166; https://doi.org/10.1021/acs.cgd.5b01830.Search in Google Scholar
18. Moussa, O. B., Chebbi, H., Arfaoui, Y., Falvello, L. R., Tomas, M., Zid, M. F. Structural study, vibrational and optical properties, Hirshfeld surface analysis and DFT investigation of a novel organic cation hexachloridostannate (IV), (C5H8N3)2[SnCl6]. J. Mol. Struct. 2019, 1195, 344–354; https://doi.org/10.1016/j.molstruc.2019.05.066.Search in Google Scholar
19. Ghallab, R., Boutebdja, M., Denes, G., Merazig, H. Synthesis, crystal structure and Hirshfeld surface of bis(2-aminopyridinium) hexachloridostannate (IV). Acta Crystallogr. E 2020, 76, 1279–1283; https://doi.org/10.1107/s205698902000941x.Search in Google Scholar PubMed PubMed Central
20. Manonmani, M., Balakrishnan, C., Dhanalakshmi, M., Ahamed, S. R., Vinitha, G., Sockalingam, R. M. Synthesis, structure, third-order nonlinear optical properties and Hirshfeld surface analysis of tetrakis(azepanium) hexachlorostannate(IV) dichloride and tetrakis(azepanium) hexabromostannate(IV) dibromide. J. Mol. Struct. 2021, 1227, 129515; https://doi.org/10.1016/j.molstruc.2020.129515.Search in Google Scholar
21. Dolling, B., Gillon, A. L., Orpen, A. G., Starbuck, J., Wang, X.-M. Homologous families of chloride-rich 4,4′-bipyridinium salt structures. Chem. Commun. 2001, 567–568; https://doi.org/10.1039/b009467f.Search in Google Scholar
22. Wilson, R. E., Schnaars, D. D., Andrews, M. B., Cahill, C. L. Supramolecular interactions in PuO2Cl42- and PuCl62- complexes with protonated pyridines: synthesis, crystal structures, and Raman spectroscopy. Inorg. Chem. 2014, 53, 383–392; https://doi.org/10.1021/ic4023294.Search in Google Scholar PubMed
23. Wacker, J. N., Han, S. Y., Murray, A. V., Vanagas, N. A., Bertke, J. A., Sperling, J. M., Surbella, R. G., Knope, K. E. From thorium to plutonium: trends in actinide(IV) chloride structural chemistry. Inorg. Chem. 2019, 58, 10578–10591; https://doi.org/10.1021/acs.inorgchem.9b01279.Search in Google Scholar
24. Frank, W., Reiss, G. J. Bis(1,6-diammoniohexane) tetraaquahydrogen(1+) hexachlororhodate(III) dichloride, [H3N(CH2)6NH3]2[H9O4][RhCl6]Cl2: chain-like [H9O4]+ ions enclosed in the cavities of a complex organic-inorganic framework. Inorg. Chem. 1997, 36, 4593–4595; https://doi.org/10.1021/ic970337a.Search in Google Scholar
25. Reiss, G. J. The pseudosymmetric structure of bis(diisopropylammonium) hexachloroiridate(IV) and its relationship to potassium hexachloroiridate(III). Acta Crystallogr. E 2002, 58, m47–m50.10.1107/S1600536802000417Search in Google Scholar
26. Reiss, G. J. A reinvestigation of Wilm’s salt,(NH4)4[RhCl6]NO3-structure, spectroscopy and thermal analysis-. Z. Kristallogr. - Cryst. Mater. 2002, 217, 550–556.10.1524/zkri.217.10.550.20794Search in Google Scholar
27. Iyere, P. A., Kayren, L. J., Cordes, A. W., Eagle, C. T., Nile, T. A., Schimek, G. L., Pennington, W. T. Molecular and supramolecular structure of 4,4′-bipyridinium diiodide. Cryst. Eng. 1998, 1, 159–167; https://doi.org/10.1016/s0025-5408(98)00127-5.Search in Google Scholar
28. Aniola, M., Katrusiak, A. Conformational conversion of 4,4′-bipyridinium in a hidden high-pressure phase. Cryst. Growth Des. 2015, 15, 764–770; https://doi.org/10.1021/cg501585a.Search in Google Scholar
29. Valdes-Martinez, J., Toscano, R. A. German-Acacio, J. M. 4,4′-Bipyridinium tetrachloridopalladate(II). Acta Crystallogr. E 2007, 63, m870–m871.10.1107/S1600536807008483Search in Google Scholar
30. Bärnighausen, H. Group-subgroup relations between space groups: a useful tool in crystal chemistry. Commun. Math. Chem. 1980, 9, 139–175.Search in Google Scholar
31. Müller, U. Relating crystal structures by group-subgroup relations. In International Tables for Crystallography, Symmetry Relations Between Space Groups; Wondratschek, H., Müller, U., Eds. John Wiley & Sons: Chichester, Vol. A1, 2010, 2nd ed.; p. 44.10.1107/97809553602060000795Search in Google Scholar
© 2022 Guido J. Reiss and Martin van Megen, published by De Gruyter, Berlin/Boston
This work is licensed under the Creative Commons Attribution 4.0 International License.
Articles in the same Issue
- Frontmatter
- New Crystal Structures
- Crystal structure of {2,2′-{cyclohexane-1,2-diylbis[(azanylylidene)methylylidene]}bis(2,4-dibromophenolato)-κ4 N,N′,O,O′}copper(II) ─ diethylformamide (1/1), C23H23Br4CuN3O3
- The crystal structure of 2-(2-methyl-6-phenyl-4H-pyran-4-ylidene)-1H-indene-1,3(2H)-dione, C21H14O3
- Crystal structure of bis((1-methylbenzimidazol-2-yl)methyl)amine, C18H19N5
- Crystal structure of (E)-N′-(1-(2-hydroxy-4-methoxyphenyl)ethylidene) isonicotinohydrazide, C15H15N3O3
- Crystal structure of 2-((4-phenyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)thio)acetonitrile, C15H11N5S
- The crystal structure of 2,2′-((1E,1′E)-hydrazine-1,2-diylidenebis(methaneylylidene))bis(4-chlorophenol), C14H10Cl2N2O2
- Dichlorido-{2,6-bis(4,5-dihydro-1H-pyrazol-3-yl)pyridine-κ3 N,N′,N″}zinc(II), C11H9C12N5Zn
- The crystal structure of dichlorido-(2-((4-phenyl-2H-1,2,3-triazol-2-yl)methyl)pyridine-κ2N,N′)palladium(II), C14H12Cl2N4Pd
- The crystal structure of 1-(N1-benzyl-2-methyl-4-nitro-imidazol-5-yl)-4-(prop-2-yn-1-yl) piperazine, C18H21N5O2
- Crystal structure of (μ4-(1,2,4,5-tetra(1,2,4-triazol-1-ylmethyl)-benzene-κ4N:N1:N2:N3)disilver(I) diperchlorate
- The crystal structure of 1-(2-bromoethane)-4-amine-3,5-dinitropyrazole, C5H6Br1N5O4
- Crystal structure of (E)-1-(4-benzyl-3,5-dioxomorpholin-2-ylidene)ethyl acetate, C15H15N1O5
- The crystal structure of poly[diaqua-(μ2-1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ2N:N′)-bis(μ3-terephthalato-κ3O:O′:O′′)dicadmium(II)], C17H15N6O5Cd
- Crystal structure of (E)-N′-(1-(5-chloro-2-hydroxyphenyl) ethylidene)thiophene-2-carbohydrazide, C13H11ClN2O2S
- The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylato-k2 N,O)cobalt(II)]-monohydrate, C36H26N4O5Co
- Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-3-hydroxybenzo-hydrazide monohydrate, C14H13ClN2O4
- Crystal structure of 1,1′-(methylene)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S:S)nickel(II), C42H30N14Ni2S8
- Crystal structure of 1,1′-(1,2-ethanediyl)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S:S)nickel(II), C20H14N6NiS4
- The crystal structure of 1-methyl-1H-pyrazol-2-ium nitrate, C4H7O3N3
- The crystal structure of 4,4′-diselanediylbis(8-(hexyloxy)-3,6-dimethyl-1-(piperidin-1-yl)isoquinoline-7-carbonitrile), C46H60N6O2Se2
- The crystal structure of tris(6-methylpyridin-2-yl)phosphine selenide, C18H18N3PSe
- The crystal structure of 1,2-bis(2,4-dinitro-1H-imidazol-1-yl)ethane ─ acetone (1/1), C11H12N8O9
- Crystal structure of [diaqua[2,2′-(1,2-phenylene)bis(1H-imidazole-4-carboxylato-5-carboxy)-κ4N,N′,O,O′]nickel(II)] tetrahydrate, C16H12N4NiO10·4H2O
- The crystal structure of tris(4-methyl-1H-pyrazol-1-yl)methane, C13H16N6
- The crystal structure of 5,6-dichloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H8Cl2N2O2
- Crystal structure of (E)-(2-methoxy-benzylidene)-(4-[1,2,4]triazol-1-yl-phenyl)-amine, C16H14N4O
- The crystal structure of (Z)-2-(4-(4-bromophenyl)thiazol-2-yl)-4-(3-hydroxybut-2-enoyl)-5-methyl -1,2-dihydro-3H-pyrazol-3-one – methanol (1/1), C18H18N3O4S
- Crystal structure of tetraaqua-tris(nitrato-κ2 O,O′) erbium(III) monohydrate, Er(NO3)3·5H2O, H10ErN3O14
- The crystal structure of 1-methyl-2-nitro-1H-imidazole 3-oxide, C4H5N3O3
- The crystal structure of 1-methyl-2-nitroimidazole, C4H5N3O2
- The crystal structure of 2-carboxyl-4-nitroimidazole monohydrate, C4H5N3O5
- Crystal structure of bis[hydrido-hexaphenylcarbodiphosphoran][tetra-trifluoromethyl-(μ-diiodo)-diplatinat]
- The crystal structure of poly[μ2-aqua- aqua-(μ3-(E)-2-(4-((2-carbamothioylhydrazineylidene)methyl)phenoxy)acetato-κ3 O:S:S)sodium(I)], C10H14N3O5SNa
- The twinned crystal structure of [4,4′-bipyridine]-1,1′-diium hexachloridostannate(IV), C10H10N2SnCl6
- The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylate-k2 N,O)copper(II)], C34H24N4O4Cu
- Crystal structure of trans-1,2-bis(pyridinium-4-yl) ethylene bis(2-carboxy-4-bromobenzoate) – water (1/4), C14H14BrNO6
- Crystal structure of poly[diaqua-(μ3-fumarato)-(μ3-maleato)-(μ4-1,2,4,5-tetrakis((1H-1,2,4-triazol-1-yl)methyl)benzene)tetracadmium(II)] dihydrate, C34H32N12O9Cd4
- Crystal structure of a second modification of Pachypodol, C18H16O7
- Crystal structure of methyl 2-(4-(2-(cyclopentyl-amino)-1-(N-(4-methoxyphenyl)-1-methyl-5-phenyl-1-H-pyrazole-3-carboxamido)-2-oxoethyl)phenyl)acetate, C34H36N4O5
- The crystal structure of catena-poly[(m2-4,4′-bipyridine-κ2 N:N)-bis(6-phenylpyridine-2-carboxylato-κ2 N,O) zinc(II)], C34H24N4O4Zn
- The crystal structure of hexaquamagnesium(II) (2,4-bis(nitroimino)-6-oxo-1,3,5-triazinane-1,3-diide), C3H15MgN7O12
- The crystal structure of 7-Bromo-2-(4-chloro-phenyl)-quinoxaline, C14H9BrClN2
- Crystal structure of methyl 4-{[4-(4-cyanobenzamido)phenyl]amino}benzofuro[2,3-d]pyrimidine-6-carboxylate, C26H17N5O4
- The crystal structure of (4SR)-7-(3,4-dichlorobenzyl)-4,8,8-trimethyl-7,8-dihydroimidazo[5,1c][1,2,4]triazine-3,6(2H,4H)-dione, C15H16Cl2N4O2
- Crystal structure of catena-poly[{μ2-3-carboxy-2,3-bis((4-methylbenzoyl)oxy)propanoato-κ2 O:O′}tris(methanol-κ1 O)lanthanum(III)], C63H63LaO27
Articles in the same Issue
- Frontmatter
- New Crystal Structures
- Crystal structure of {2,2′-{cyclohexane-1,2-diylbis[(azanylylidene)methylylidene]}bis(2,4-dibromophenolato)-κ4 N,N′,O,O′}copper(II) ─ diethylformamide (1/1), C23H23Br4CuN3O3
- The crystal structure of 2-(2-methyl-6-phenyl-4H-pyran-4-ylidene)-1H-indene-1,3(2H)-dione, C21H14O3
- Crystal structure of bis((1-methylbenzimidazol-2-yl)methyl)amine, C18H19N5
- Crystal structure of (E)-N′-(1-(2-hydroxy-4-methoxyphenyl)ethylidene) isonicotinohydrazide, C15H15N3O3
- Crystal structure of 2-((4-phenyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)thio)acetonitrile, C15H11N5S
- The crystal structure of 2,2′-((1E,1′E)-hydrazine-1,2-diylidenebis(methaneylylidene))bis(4-chlorophenol), C14H10Cl2N2O2
- Dichlorido-{2,6-bis(4,5-dihydro-1H-pyrazol-3-yl)pyridine-κ3 N,N′,N″}zinc(II), C11H9C12N5Zn
- The crystal structure of dichlorido-(2-((4-phenyl-2H-1,2,3-triazol-2-yl)methyl)pyridine-κ2N,N′)palladium(II), C14H12Cl2N4Pd
- The crystal structure of 1-(N1-benzyl-2-methyl-4-nitro-imidazol-5-yl)-4-(prop-2-yn-1-yl) piperazine, C18H21N5O2
- Crystal structure of (μ4-(1,2,4,5-tetra(1,2,4-triazol-1-ylmethyl)-benzene-κ4N:N1:N2:N3)disilver(I) diperchlorate
- The crystal structure of 1-(2-bromoethane)-4-amine-3,5-dinitropyrazole, C5H6Br1N5O4
- Crystal structure of (E)-1-(4-benzyl-3,5-dioxomorpholin-2-ylidene)ethyl acetate, C15H15N1O5
- The crystal structure of poly[diaqua-(μ2-1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ2N:N′)-bis(μ3-terephthalato-κ3O:O′:O′′)dicadmium(II)], C17H15N6O5Cd
- Crystal structure of (E)-N′-(1-(5-chloro-2-hydroxyphenyl) ethylidene)thiophene-2-carbohydrazide, C13H11ClN2O2S
- The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylato-k2 N,O)cobalt(II)]-monohydrate, C36H26N4O5Co
- Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-3-hydroxybenzo-hydrazide monohydrate, C14H13ClN2O4
- Crystal structure of 1,1′-(methylene)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S:S)nickel(II), C42H30N14Ni2S8
- Crystal structure of 1,1′-(1,2-ethanediyl)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S:S)nickel(II), C20H14N6NiS4
- The crystal structure of 1-methyl-1H-pyrazol-2-ium nitrate, C4H7O3N3
- The crystal structure of 4,4′-diselanediylbis(8-(hexyloxy)-3,6-dimethyl-1-(piperidin-1-yl)isoquinoline-7-carbonitrile), C46H60N6O2Se2
- The crystal structure of tris(6-methylpyridin-2-yl)phosphine selenide, C18H18N3PSe
- The crystal structure of 1,2-bis(2,4-dinitro-1H-imidazol-1-yl)ethane ─ acetone (1/1), C11H12N8O9
- Crystal structure of [diaqua[2,2′-(1,2-phenylene)bis(1H-imidazole-4-carboxylato-5-carboxy)-κ4N,N′,O,O′]nickel(II)] tetrahydrate, C16H12N4NiO10·4H2O
- The crystal structure of tris(4-methyl-1H-pyrazol-1-yl)methane, C13H16N6
- The crystal structure of 5,6-dichloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H8Cl2N2O2
- Crystal structure of (E)-(2-methoxy-benzylidene)-(4-[1,2,4]triazol-1-yl-phenyl)-amine, C16H14N4O
- The crystal structure of (Z)-2-(4-(4-bromophenyl)thiazol-2-yl)-4-(3-hydroxybut-2-enoyl)-5-methyl -1,2-dihydro-3H-pyrazol-3-one – methanol (1/1), C18H18N3O4S
- Crystal structure of tetraaqua-tris(nitrato-κ2 O,O′) erbium(III) monohydrate, Er(NO3)3·5H2O, H10ErN3O14
- The crystal structure of 1-methyl-2-nitro-1H-imidazole 3-oxide, C4H5N3O3
- The crystal structure of 1-methyl-2-nitroimidazole, C4H5N3O2
- The crystal structure of 2-carboxyl-4-nitroimidazole monohydrate, C4H5N3O5
- Crystal structure of bis[hydrido-hexaphenylcarbodiphosphoran][tetra-trifluoromethyl-(μ-diiodo)-diplatinat]
- The crystal structure of poly[μ2-aqua- aqua-(μ3-(E)-2-(4-((2-carbamothioylhydrazineylidene)methyl)phenoxy)acetato-κ3 O:S:S)sodium(I)], C10H14N3O5SNa
- The twinned crystal structure of [4,4′-bipyridine]-1,1′-diium hexachloridostannate(IV), C10H10N2SnCl6
- The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylate-k2 N,O)copper(II)], C34H24N4O4Cu
- Crystal structure of trans-1,2-bis(pyridinium-4-yl) ethylene bis(2-carboxy-4-bromobenzoate) – water (1/4), C14H14BrNO6
- Crystal structure of poly[diaqua-(μ3-fumarato)-(μ3-maleato)-(μ4-1,2,4,5-tetrakis((1H-1,2,4-triazol-1-yl)methyl)benzene)tetracadmium(II)] dihydrate, C34H32N12O9Cd4
- Crystal structure of a second modification of Pachypodol, C18H16O7
- Crystal structure of methyl 2-(4-(2-(cyclopentyl-amino)-1-(N-(4-methoxyphenyl)-1-methyl-5-phenyl-1-H-pyrazole-3-carboxamido)-2-oxoethyl)phenyl)acetate, C34H36N4O5
- The crystal structure of catena-poly[(m2-4,4′-bipyridine-κ2 N:N)-bis(6-phenylpyridine-2-carboxylato-κ2 N,O) zinc(II)], C34H24N4O4Zn
- The crystal structure of hexaquamagnesium(II) (2,4-bis(nitroimino)-6-oxo-1,3,5-triazinane-1,3-diide), C3H15MgN7O12
- The crystal structure of 7-Bromo-2-(4-chloro-phenyl)-quinoxaline, C14H9BrClN2
- Crystal structure of methyl 4-{[4-(4-cyanobenzamido)phenyl]amino}benzofuro[2,3-d]pyrimidine-6-carboxylate, C26H17N5O4
- The crystal structure of (4SR)-7-(3,4-dichlorobenzyl)-4,8,8-trimethyl-7,8-dihydroimidazo[5,1c][1,2,4]triazine-3,6(2H,4H)-dione, C15H16Cl2N4O2
- Crystal structure of catena-poly[{μ2-3-carboxy-2,3-bis((4-methylbenzoyl)oxy)propanoato-κ2 O:O′}tris(methanol-κ1 O)lanthanum(III)], C63H63LaO27