Home The twinned crystal structure of [4,4′-bipyridine]-1,1′-diium hexachloridostannate(IV), C10H10N2SnCl6
Article Open Access

The twinned crystal structure of [4,4′-bipyridine]-1,1′-diium hexachloridostannate(IV), C10H10N2SnCl6

  • Guido J. Reiss ORCID logo EMAIL logo and Martin van Megen
Published/Copyright: February 4, 2022

Abstract

C10H10N2SnCl6, monoclinic, I2/a (no. 15), a = 7.4941(3) Å, b = 12.8731(4) Å, c = 15.8688(5) Å, β = 93.042(3)°, Z = 4, V = 1528.73(9) Å3, R gt (F) = 0.0264, wR ref = 0.0485, T = 100 K.

CCDC no.: 2144049

A selected region of the hydrogen bonded layered title crystal structure is shown in the figure with view along [−100]. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.20 × 0.15 × 0.12 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 2.71 mm−1
Diffractometer, scan mode: Xcalibur, ω
θ max, completeness: 27.6°, >99%
N(hkl)measured, N(hkl)unique: 3193, 3193
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2334
N(param)refined: 105
Programs: CrysAlisPRO [1], Nespolo [2], SHELX [3], [4], [5], Diamond [6]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Sn1 0.250000 0.250000 0.250000 0.01118 (8)
Cl1 0.29832 (11) 0.26028 (6) 0.40446 (4) 0.01923 (18)
Cl2 0.10352 (11) 0.41644 (5) 0.25078 (4) 0.01688 (17)
Cl3 −0.03375 (11) 0.16763 (6) 0.26519 (5) 0.02192 (18)
N1 0.750000 0.5090 (3) 0.500000 0.0208 (9)
H1N 0.750000 0.5728 (19) 0.500000 0.025*
N2 0.750000 −0.0305 (3) 0.500000 0.0186 (9)
H2N 0.750000 −0.0962 (19) 0.500000 0.022*
C1 0.8004 (5) 0.4588 (3) 0.4309 (2) 0.0196 (7)
H1 0.840 (5) 0.499 (3) 0.388 (2) 0.024*
C2 0.8016 (5) 0.3523 (2) 0.42975 (19) 0.0159 (7)
H2 0.839 (5) 0.317 (2) 0.383 (2) 0.019*
C3 0.750000 0.2966 (3) 0.500000 0.0130 (10)
C4 0.750000 0.1815 (3) 0.500000 0.0131 (9)
C5 0.6980 (5) 0.1257 (2) 0.42720 (19) 0.0154 (7)
H5 0.656 (5) 0.157 (2) 0.378 (2) 0.018*
C6 0.6982 (5) 0.0197 (3) 0.4286 (2) 0.0183 (7)
H6 0.663 (5) −0.015 (3) 0.386 (2) 0.022*

Source of material

All chemicals were obtained from commercial sources and used as purchased. The title compound was synthesized by dissolving 0.156 g (1 mmol) 4,4′-bipyridine in 1 mL concentrated hydrochloric acid and adding an equivalent amount of SnCl4 (0.262 g; 1 mmol). Short-time warming until complete dissolution of both components yielded a colorless solution. From the aforementioned solution colorless block crystals grew at room temperature within a few days.

Experimental details

All screened crystals of the title compound were directly selected from the mother liquor and rapidly transferred to the Xcalibur four-circle diffractometer equipped with an EOS detector [1]. An absorption correction (Multi-Scan method) was applied [1]. All investigated crystals suffer from the same non-merohedral twinning (Twin law: 180° about (−0.03 0.00 1.00) in the reciprocal space; 180° about the vector 0.00 0.00 1.00 in the direct space; twin matrix −1.00 0.00 −0.05 0.00 −1.00 0.00 0.00 0.00 1.00). Finally we used a crystal with a large primary component (refined twin ratio: 0.8212(5)/0.1788(5) [1, 2, 4]).

The structure solution and the refinement were successfully carried out using the SHELX program system [3], [4], [5]. All hydrogen atoms were located in the difference electron density map after all non-hydrogen atoms were located. The maximum residual peak of 1.43 e Å−3 is located near Sn1 (0.78 Å). The figure was created using the Diamond software [6].

Comment

Introduction

There is a continuing interest in the structural chemistry of hydrogen bonded [4,4′-bipyridine]-1,1′-diium (bipyH2) salts [7]. Furthermore these salts may be applied to catalysis etc. [89]. We have already shown that heterocyclic cations like some bipyridinium salts [10, 11] and salts based on α, ω-diaminium-alkanes are excellent tectons to construct hydrogen bonded networks [12]. The [SnCl6]2− counterion used for this study is a bulky, medium-strong hydrogen-bond acceptor, which is used by us [13], [14], [15], [16] and many other groups [17], [18], [19], [20]. The title structure is very similar to those reported for the following compounds: bipyH2[MCl6]; M = Pt, Os [21]. Some more related salts based on (bipyH2) cations and [MCl6]2− M = Pu [22], U [23] have been reported. This contribution is part of our longstanding interest in the structures and hydrogen-bonding schemes of hexahalogenidometallates [24], [25], [26].

Structural comments

The asymmetric unit of the title compound consists of a) one half of a [4,4′-bipyridine]-1,1′-diium (bipyH2) dication locate on the twofold axis (Wyckoff site: 4e); b) one half of a [SnCl6]2− anion located on an inversion center (Wyckoff site: 4d). Bond lengths and angles within the bipyH2 cation are all in the expected ranges [7, 10, 27], [28], [29]. The same is true for the [SnCl6]2− anion [13], [14], [15], [16], [17], [18], [19], [20]. In detail, the conformation of the bipyH2 dication is characterized by the dihedral angle of −37.7(3)° for C2–C3–C4–C5. The Sn–Cl distances in the [SnCl6]2− anion range from 2.3997(8)–2.4621(6) Å and the cis-angles are in the narrow range of 89.20(3)–90.80(3)°. As expected, the longest Sn–Cl bond length is associated with Cl1, which is involved in two classical hydrogen bonds (see the figure with view against [001]). The other chlorido ligands of the [SnCl6]2− anion are not involved in any classical hydrogen bonds. This finding came as no surprise, as the large number of hydrogen bond acceptor atoms of the [SnCl6]2− anion only has to be related to one bipyH2 dication in this AB salt compound. Each bipyH2 cation is connected to four neighboring [SnCl6]2− anions by four weak bifurcated N–H⃛Cl hydrogen bonds (see the figure; N1⃛Cl1 3.367(5) Å). Thus each mesh of the hydrogen-bonded net consists of two cations and two anions creating the typical 2D network known for this class of structures [21].

Group-subgroup relation

There is a translationengleiche group-subgroup relation between the title structure and the structure of the related compounds crystallizing in the space group Ibam (no. 72.): bipyH2[MCl6] for M = Pt, Os. For these aristotype structures the bipyH2 is located around a 222 site (0.5, 0, 0.25; Wyckoff symbol: 4b), whereas the [MCl6]2− anion is located on a 2/m site (0, 0, 0; Wyckoff symbol: 4c). The symmetry reduction to the title structure (I2/a) requires a origin shift (0.25, 0.25, 0.25) and leads to the following occupancies: the bipyH2 is located on the twofold axis (0.75, y, 0.5; with y near 0.25; Wyckoff symbol: 4e); the [SnCl6]2− anion is located on the inversion center (0.25, 0.25, 0.25; Wyckoff symbol: 4d) [30, 31]. A detailed comparison shows that the bipyH2 cation approximately restores the orientation within the packing known from the aristotype structures. Thus the deviation from the aristotype is mainly caused by a mutual tilt of the [SnCl6]2− anions (see the figure). This tilting leads to a slightly longer Cl⃛Cl distance (3.155 Å) than that found in the aristotype structure of bipyH2[OsCl6] (3.106 Å) [21].


Corresponding author: Guido J. Reiss, Institut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-402 Düsseldorf, Germany, E-mail:

Funding source: Ministry of Innovation, Science and Research of North-Rhine Westphalia

Funding source: German Research Foundation

Award Identifier / Grant number: INST 208/533-1

Award Identifier / Grant number: 162659349

Funding source: Heinrich-Heine-Universität Düüsseldorf

Award Identifier / Grant number: ULBD-21-7653

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was financially supported by the Ministry of Innovation, Science and Research of North-Rhine Westphalia and the German Research Foundation (DFG) (Xcalibur diffractometer; INST 208/533-1, project no. 162659349). Funding by the open access fund of the Heinrich-Heine-Universität Düsseldorf is also gratefully acknowledged (ULBD-21-7653).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Oxford Diffraction. CrysAlisPRO (version1.171.33.42); Oxford Diffraction Ltd.: Oxford, UK, 2009.Search in Google Scholar

2. Nespolo, N. Does mathematical crystallography still have a role in the XXI century? Acta Crystallogr. A 2008, 64, 96–111; https://doi.org/10.1107/s0108767307044625.Search in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Hübschle, C. B., Sheldrick, G. M., Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284.10.1107/S0108767319098143Search in Google Scholar

6. Brandenburg, K. DIAMOND. Visual Crystal Structure Information System (ver. 5.2); Crystal Impact: Bonn, Germany, 2018.Search in Google Scholar

7. Dorn, T., Janiak, C., Abu-Shandi, K. Hydrogen-bonding, π-stacking and Cl–anion–π interactions of linear bipyridinium cations with phosphate, chloride and [CoCl4]2− anions. CrystEngComm 2005, 7, 633–641; https://doi.org/10.1039/b508944a.Search in Google Scholar

8. Yarie, M., Zolfigol, M. A., Baghery, S., Alonso, D. A., Khoshnood, A., Kalhor, M., Bayat, Y., Asgari, A. Design and preparation of [4,4′-bipyridine]-1,1′-diium trinitromethanide (BPDTNM) as a novel nanosized ionic liquid catalyst: application to the synthesis of 1-(benzoimidazolylamino)methyl-2-naphthols. New J. Chem. 2017, 41, 4431–4440; https://doi.org/10.1039/c6nj04074h.Search in Google Scholar

9. Novo, P., García, M. D., Peinador, C., Pazos, E. Reversible control of DNA Binding with cucurbit[8]uril-Induced supramolecular 4,4′-bipyridinium peptide dimers. Bioconjugate Chem. 2021, 32, 507–511; https://doi.org/10.1021/acs.bioconjchem.1c00063.Search in Google Scholar PubMed

10. Reiss, G. J., Megen van, M. Two new polyiodides in the 4,4′-bipyridinium diiodide/iodine system. Z. Naturforsch. B Chem. Sci. 2012, 67, 5–10; https://doi.org/10.1515/znb-2012-0102.Search in Google Scholar

11. Megen van, M., Frank, W., Reiss, G. J. A detailed comparative structural study of the hydrogen bonded networks in solids, obtained by the reaction of 4,4′-bipyridine and varied alkane-α,ω-diphosphonic acids. CrystEngComm 2016, 18, 3574–3584; https://doi.org/10.1039/C5CE02156A.Search in Google Scholar

12. Megen van, M., Reiss, G. J. l62- Anion composed of two asymmetric triiodide moieties: a competition between halogen and hydrogen bond. Inorganics 2013, 1, 3–13; https://doi.org/10.3390/inorganics1010003.Search in Google Scholar

13. Megen van, M., Prömper, S., Reiss, G. J. Bis(3-azaniumylpyridin-1-ium) hexachloridostannate(IV) dichloride. Acta Crystallogr. E 2013, 69, m217; https://doi.org/10.1107/s1600536813006806.Search in Google Scholar PubMed PubMed Central

14. Reiss, G. J., Helmbrecht, C. Bis(diisopropylammonium) hexachloridostannate(IV). Acta Crystallogr. E 2021, 68, m1402–m1403; https://doi.org/10.1107/S1600536812043371.Search in Google Scholar PubMed PubMed Central

15. Lambertz, C., Luppa, A., Reiss, G. J. Crystal structure of bis((dimethylphosphoryl)methanaminium) hexachloridostannate(IV), C6H22Cl6N2O2P2Sn. Z. Kristallogr. N. Cryst. Struct. 2013, 228, 227–228; https://doi.org/10.1524/ncrs.2013.0113.Search in Google Scholar

16. Reiss, G. J., Wyshusek, M. The layered crystal structure of bis(theophyllinium) hexachloridostannate (IV), C14H18N8O8SnCl6. Z. Kristallogr. NCS 2021, 236, 989–992. https://doi.org/10.1515/ncrs-2021-0185.Search in Google Scholar

17. Szafrański, M., Ståahl, K. Phase transitions in layered diguanidinium hexachlorostannate (IV). Cryst. Growth Des. 2016, 16, 2157–2166; https://doi.org/10.1021/acs.cgd.5b01830.Search in Google Scholar

18. Moussa, O. B., Chebbi, H., Arfaoui, Y., Falvello, L. R., Tomas, M., Zid, M. F. Structural study, vibrational and optical properties, Hirshfeld surface analysis and DFT investigation of a novel organic cation hexachloridostannate (IV), (C5H8N3)2[SnCl6]. J. Mol. Struct. 2019, 1195, 344–354; https://doi.org/10.1016/j.molstruc.2019.05.066.Search in Google Scholar

19. Ghallab, R., Boutebdja, M., Denes, G., Merazig, H. Synthesis, crystal structure and Hirshfeld surface of bis(2-aminopyridinium) hexachloridostannate (IV). Acta Crystallogr. E 2020, 76, 1279–1283; https://doi.org/10.1107/s205698902000941x.Search in Google Scholar PubMed PubMed Central

20. Manonmani, M., Balakrishnan, C., Dhanalakshmi, M., Ahamed, S. R., Vinitha, G., Sockalingam, R. M. Synthesis, structure, third-order nonlinear optical properties and Hirshfeld surface analysis of tetrakis(azepanium) hexachlorostannate(IV) dichloride and tetrakis(azepanium) hexabromostannate(IV) dibromide. J. Mol. Struct. 2021, 1227, 129515; https://doi.org/10.1016/j.molstruc.2020.129515.Search in Google Scholar

21. Dolling, B., Gillon, A. L., Orpen, A. G., Starbuck, J., Wang, X.-M. Homologous families of chloride-rich 4,4′-bipyridinium salt structures. Chem. Commun. 2001, 567–568; https://doi.org/10.1039/b009467f.Search in Google Scholar

22. Wilson, R. E., Schnaars, D. D., Andrews, M. B., Cahill, C. L. Supramolecular interactions in PuO2Cl42- and PuCl62- complexes with protonated pyridines: synthesis, crystal structures, and Raman spectroscopy. Inorg. Chem. 2014, 53, 383–392; https://doi.org/10.1021/ic4023294.Search in Google Scholar PubMed

23. Wacker, J. N., Han, S. Y., Murray, A. V., Vanagas, N. A., Bertke, J. A., Sperling, J. M., Surbella, R. G., Knope, K. E. From thorium to plutonium: trends in actinide(IV) chloride structural chemistry. Inorg. Chem. 2019, 58, 10578–10591; https://doi.org/10.1021/acs.inorgchem.9b01279.Search in Google Scholar

24. Frank, W., Reiss, G. J. Bis(1,6-diammoniohexane) tetraaquahydrogen(1+) hexachlororhodate(III) dichloride, [H3N(CH2)6NH3]2[H9O4][RhCl6]Cl2: chain-like [H9O4]+ ions enclosed in the cavities of a complex organic-inorganic framework. Inorg. Chem. 1997, 36, 4593–4595; https://doi.org/10.1021/ic970337a.Search in Google Scholar

25. Reiss, G. J. The pseudosymmetric structure of bis(diisopropylammonium) hexachloroiridate(IV) and its relationship to potassium hexachloroiridate(III). Acta Crystallogr. E 2002, 58, m47–m50.10.1107/S1600536802000417Search in Google Scholar

26. Reiss, G. J. A reinvestigation of Wilm’s salt,(NH4)4[RhCl6]NO3-structure, spectroscopy and thermal analysis-. Z. Kristallogr. - Cryst. Mater. 2002, 217, 550–556.10.1524/zkri.217.10.550.20794Search in Google Scholar

27. Iyere, P. A., Kayren, L. J., Cordes, A. W., Eagle, C. T., Nile, T. A., Schimek, G. L., Pennington, W. T. Molecular and supramolecular structure of 4,4′-bipyridinium diiodide. Cryst. Eng. 1998, 1, 159–167; https://doi.org/10.1016/s0025-5408(98)00127-5.Search in Google Scholar

28. Aniola, M., Katrusiak, A. Conformational conversion of 4,4′-bipyridinium in a hidden high-pressure phase. Cryst. Growth Des. 2015, 15, 764–770; https://doi.org/10.1021/cg501585a.Search in Google Scholar

29. Valdes-Martinez, J., Toscano, R. A. German-Acacio, J. M. 4,4′-Bipyridinium tetrachloridopalladate(II). Acta Crystallogr. E 2007, 63, m870–m871.10.1107/S1600536807008483Search in Google Scholar

30. Bärnighausen, H. Group-subgroup relations between space groups: a useful tool in crystal chemistry. Commun. Math. Chem. 1980, 9, 139–175.Search in Google Scholar

31. Müller, U. Relating crystal structures by group-subgroup relations. In International Tables for Crystallography, Symmetry Relations Between Space Groups; Wondratschek, H., Müller, U., Eds. John Wiley & Sons: Chichester, Vol. A1, 2010, 2nd ed.; p. 44.10.1107/97809553602060000795Search in Google Scholar

Received: 2021-11-21
Accepted: 2022-01-24
Published Online: 2022-02-04
Published in Print: 2022-04-26

© 2022 Guido J. Reiss and Martin van Megen, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. Crystal structure of {2,2′-{cyclohexane-1,2-diylbis[(azanylylidene)methylylidene]}bis(2,4-dibromophenolato)-κ4 N,N′,O,O′}copper(II) ─ diethylformamide (1/1), C23H23Br4CuN3O3
  4. The crystal structure of 2-(2-methyl-6-phenyl-4H-pyran-4-ylidene)-1H-indene-1,3(2H)-dione, C21H14O3
  5. Crystal structure of bis((1-methylbenzimidazol-2-yl)methyl)amine, C18H19N5
  6. Crystal structure of (E)-N′-(1-(2-hydroxy-4-methoxyphenyl)ethylidene) isonicotinohydrazide, C15H15N3O3
  7. Crystal structure of 2-((4-phenyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)thio)acetonitrile, C15H11N5S
  8. The crystal structure of 2,2′-((1E,1′E)-hydrazine-1,2-diylidenebis(methaneylylidene))bis(4-chlorophenol), C14H10Cl2N2O2
  9. Dichlorido-{2,6-bis(4,5-dihydro-1H-pyrazol-3-yl)pyridine-κ3 N,N′,N″}zinc(II), C11H9C12N5Zn
  10. The crystal structure of dichlorido-(2-((4-phenyl-2H-1,2,3-triazol-2-yl)methyl)pyridine-κ2N,N′)palladium(II), C14H12Cl2N4Pd
  11. The crystal structure of 1-(N1-benzyl-2-methyl-4-nitro-imidazol-5-yl)-4-(prop-2-yn-1-yl) piperazine, C18H21N5O2
  12. Crystal structure of (μ4-(1,2,4,5-tetra(1,2,4-triazol-1-ylmethyl)-benzene-κ4N:N1:N2:N3)disilver(I) diperchlorate
  13. The crystal structure of 1-(2-bromoethane)-4-amine-3,5-dinitropyrazole, C5H6Br1N5O4
  14. Crystal structure of (E)-1-(4-benzyl-3,5-dioxomorpholin-2-ylidene)ethyl acetate, C15H15N1O5
  15. The crystal structure of poly[diaqua-(μ2-1,2,4,5-tetrakis(1,2,4-triazol-1-ylmethyl)-benzene-κ2N:N′)-bis(μ3-terephthalato-κ3O:O′:O′′)dicadmium(II)], C17H15N6O5Cd
  16. Crystal structure of (E)-N′-(1-(5-chloro-2-hydroxyphenyl) ethylidene)thiophene-2-carbohydrazide, C13H11ClN2O2S
  17. The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylato-k2 N,O)cobalt(II)]-monohydrate, C36H26N4O5Co
  18. Crystal structure of (E)-N′-(2-chloro-6-hydroxybenzylidene)-3-hydroxybenzo-hydrazide monohydrate, C14H13ClN2O4
  19. Crystal structure of 1,1′-(methylene)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S:S)nickel(II), C42H30N14Ni2S8
  20. Crystal structure of 1,1′-(1,2-ethanediyl)bis(pyridin-1-ium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2 S:S)nickel(II), C20H14N6NiS4
  21. The crystal structure of 1-methyl-1H-pyrazol-2-ium nitrate, C4H7O3N3
  22. The crystal structure of 4,4′-diselanediylbis(8-(hexyloxy)-3,6-dimethyl-1-(piperidin-1-yl)isoquinoline-7-carbonitrile), C46H60N6O2Se2
  23. The crystal structure of tris(6-methylpyridin-2-yl)phosphine selenide, C18H18N3PSe
  24. The crystal structure of 1,2-bis(2,4-dinitro-1H-imidazol-1-yl)ethane ─ acetone (1/1), C11H12N8O9
  25. Crystal structure of [diaqua[2,2′-(1,2-phenylene)bis(1H-imidazole-4-carboxylato-5-carboxy)-κ4N,N′,O,O′]nickel(II)] tetrahydrate, C16H12N4NiO10·4H2O
  26. The crystal structure of tris(4-methyl-1H-pyrazol-1-yl)methane, C13H16N6
  27. The crystal structure of 5,6-dichloro-2-(quinolin-8-yl)isoindoline-1,3-dione, C17H8Cl2N2O2
  28. Crystal structure of (E)-(2-methoxy-benzylidene)-(4-[1,2,4]triazol-1-yl-phenyl)-amine, C16H14N4O
  29. The crystal structure of (Z)-2-(4-(4-bromophenyl)thiazol-2-yl)-4-(3-hydroxybut-2-enoyl)-5-methyl -1,2-dihydro-3H-pyrazol-3-one – methanol (1/1), C18H18N3O4S
  30. Crystal structure of tetraaqua-tris(nitrato-κ2 O,O′) erbium(III) monohydrate, Er(NO3)3·5H2O, H10ErN3O14
  31. The crystal structure of 1-methyl-2-nitro-1H-imidazole 3-oxide, C4H5N3O3
  32. The crystal structure of 1-methyl-2-nitroimidazole, C4H5N3O2
  33. The crystal structure of 2-carboxyl-4-nitroimidazole monohydrate, C4H5N3O5
  34. Crystal structure of bis[hydrido-hexaphenylcarbodiphosphoran][tetra-trifluoromethyl-(μ-diiodo)-diplatinat]
  35. The crystal structure of poly[μ2-aqua- aqua-(μ3-(E)-2-(4-((2-carbamothioylhydrazineylidene)methyl)phenoxy)acetato-κ3 O:S:S)sodium(I)], C10H14N3O5SNa
  36. The twinned crystal structure of [4,4′-bipyridine]-1,1′-diium hexachloridostannate(IV), C10H10N2SnCl6
  37. The crystal structure of [(2,2′-bipyridine-k2 N,N)-bis(6-phenylpyridine-2-carboxylate-k2 N,O)copper(II)], C34H24N4O4Cu
  38. Crystal structure of trans-1,2-bis(pyridinium-4-yl) ethylene bis(2-carboxy-4-bromobenzoate) – water (1/4), C14H14BrNO6
  39. Crystal structure of poly[diaqua-(μ3-fumarato)-(μ3-maleato)-(μ4-1,2,4,5-tetrakis((1H-1,2,4-triazol-1-yl)methyl)benzene)tetracadmium(II)] dihydrate, C34H32N12O9Cd4
  40. Crystal structure of a second modification of Pachypodol, C18H16O7
  41. Crystal structure of methyl 2-(4-(2-(cyclopentyl-amino)-1-(N-(4-methoxyphenyl)-1-methyl-5-phenyl-1-H-pyrazole-3-carboxamido)-2-oxoethyl)phenyl)acetate, C34H36N4O5
  42. The crystal structure of catena-poly[(m2-4,4′-bipyridine-κ2 N:N)-bis(6-phenylpyridine-2-carboxylato-κ2 N,O) zinc(II)], C34H24N4O4Zn
  43. The crystal structure of hexaquamagnesium(II) (2,4-bis(nitroimino)-6-oxo-1,3,5-triazinane-1,3-diide), C3H15MgN7O12
  44. The crystal structure of 7-Bromo-2-(4-chloro-phenyl)-quinoxaline, C14H9BrClN2
  45. Crystal structure of methyl 4-{[4-(4-cyanobenzamido)phenyl]amino}benzofuro[2,3-d]pyrimidine-6-carboxylate, C26H17N5O4
  46. The crystal structure of (4SR)-7-(3,4-dichlorobenzyl)-4,8,8-trimethyl-7,8-dihydroimidazo[5,1c][1,2,4]triazine-3,6(2H,4H)-dione, C15H16Cl2N4O2
  47. Crystal structure of catena-poly[{μ2-3-carboxy-2,3-bis((4-methylbenzoyl)oxy)propanoato-κ2 O:O′}tris(methanol-κ1 O)lanthanum(III)], C63H63LaO27
Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2021-0443/html?lang=en
Scroll to top button