Startseite Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models

  • Kirsten Ingolf Schiffmann EMAIL logo
Veröffentlicht/Copyright: 21. Januar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Feedback-controlled nanoindentation with a Berkovich diamond tip has been used to perform creep and stress relaxation tests on polycarbonate at room temperature for a wide range of loads (10 – 30000 μN) and indentation depths (30 – 3000 nm). The creep compliance J(t) and relaxation modulus G(t) have been calculated from experimental data as a function of time in the range t = 0.1 – 100 (1000) s. The data are analysed by different rheological models which are compared: (1) the Burgers model, (2) the generalised Maxwell/generalised Kelvin model, and two empirical approaches: (3) a logarithmic model, and (4) a power law model. The Burgers model gives a poor description of the material behaviour since it assumes a steady-state flow of material which is not observed in the experimental time range. The generalised models yield a set of discrete relaxation- and retardation time constants. It is shown that these time constants do not correlate with specific molecular moving processes in the polymer, but are only one of several possible parameterisations of the creep and relaxation curves. Numerical differentiation of G(t) and J(t) shows that polycarbonate has continuous relaxation- and retardation time spectra, respectively, and the dynamic viscosity η(t) of the material increases linearly with time. The behaviour of polycarbonate is best represented by the empirical power law model, which allows optimum fit of creep/relaxation curves, relaxation and retardation time spectra and time-dependent viscosity.


Dr. Kirsten Ingolf Schiffmann Fraunhofer Institut für Schicht- und Oberflächentechnik Bienroder Weg 54E, D-38108 Braunschweig, Germany Tel.: +49 531 2155 577 Fax: +49 531 2155 900

References

[1] J.D. Ferry: Viscoelastic Properties of Polymers, John Wiley & Sons, New York, 1980, p. 96 ff. and p. 59.Suche in Google Scholar

[2] W.C. Oliver, G.M. Pharr: J. Mater. Res. 7 (1992) 1564.10.1557/JMR.1992.1564Suche in Google Scholar

[3] S. Shimizu, T. Yanagimoto, M. Sakai: J. Mater. Res. 14 (1999) 4075.10.1557/JMR.1999.0550Suche in Google Scholar

[4] M.R. VanLandingham, N.K. Chang, C.C. White, P.L. Drzal, S.H. Chang: J. Polm. Sci. B: Poly. Physics 43 (2005) 1794.10.1002/polb.20454Suche in Google Scholar

[5] W.N. Findley, J.S. Lai, K. Onaran: Creep and Relaxation of Nonlinear Viscoelastic Materials, North-Holland Series in Applied Mathematics and Mechanics 18, 1976.10.1016/B978-0-7204-2369-3.50003-5Suche in Google Scholar

[6] F. Schwarzl, A.J. Stavermann: Appl. Sci. Res. A 4 (1953) 127.10.1007/BF03184944Suche in Google Scholar

[7] D. Tabor: Rev. Phys. Technol. 1 (1970) 145.10.1088/0034-6683/1/3/I01Suche in Google Scholar

[8] J.L. Bucaille, E. Felder: Phil. Mag. A 82 (2002) 2003.10.1080/01418610208235712Suche in Google Scholar

[9] W.G. Knauss, W. Zhu: Mech. Time-Dep. Mater. 6 (2002) 231.10.1023/A:1016203131358Suche in Google Scholar

[10] P.A. O’Connel, G.B. McKenna: Mech. Time-Dep. Mater. 6 (2002) 207.10.1023/A:1016205712110Suche in Google Scholar

[11] M. Mooney: J. Polym. Sci. 34 (1959) 599.10.1002/pol.1959.1203412741Suche in Google Scholar

[12] P.E. Rouse, Jr.: J. Chem. Phys. 21 (1953 1272.10.1063/1.1699180Suche in Google Scholar

[13] H. Lu, B. Wang, J. Ma, G. Huang, H. Viswanathan: Mech. Time-Dep. Mater. 7 (2003) 189.10.1023/B:MTDM.0000007217.07156.9bSuche in Google Scholar

[14] K. Zeng, S. Yang, Y.-W. Zhang: J. Appl. Phys. 95 (2004) 3655.10.1063/1.1651341Suche in Google Scholar

Received: 2006-05-05
Accepted: 2006-06-15
Published Online: 2022-01-21

© 2006 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Editorial
  3. Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models
  4. Investigation of SiO2 thin films on Si substrates for use as standards for laser-acoustic measuring devices
  5. Determination of the critical tensile stress of sapphire by spherical indentation with additional lateral forces
  6. The deformation behaviour of electrodeposited nanocrystalline Ni in an atomic force microscope with a newly developed in situ bending machine
  7. In situ electrochemical nanoindentation of a nickel (111) single crystal: hydrogen effect on pop-in behaviour
  8. Indentation behaviour of (011) thin films of III–V semiconductors: polarity effect differences between GaAs and InP
  9. Multiwall carbon nanotubes-based composites – mechanical characterization using the nanoindentation technique
  10. Nanoindentation studies of stamp materials for nanoimprint lithography
  11. Experimental and thermodynamic evaluation of the Co–Cr–C system
  12. Thermodynamics of high-temperature cuprous sulfide
  13. Sintering of Si3N4 with Li-exchanged zeolite additive
  14. Effect of LiYO2 addition on sintering behavior and indentation properties of silicon nitride ceramics
  15. Mechanism of quasi-viscous flow of zinc single crystals
  16. The absolute thermoelectric power of chromium, molybdenum, and tungsten
  17. Modelling of metal – mould interface resistance in the Al-11.5 wt.% Si alloy casting process
  18. Award/Preisverleihung
  19. Personal
  20. Conferences
  21. Contents
  22. Editorial
  23. Editorial
  24. Basic
  25. Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models
  26. Investigation of SiO2 thin films on Si substrates for use as standards for laser-acoustic measuring devices
  27. Determination of the critical tensile stress of sapphire by spherical indentation with additional lateral forces
  28. The deformation behaviour of electrodeposited nanocrystalline Ni in an atomic force microscope with a newly developed in situ bending machine
  29. In situ electrochemical nanoindentation of a nickel (111) single crystal: hydrogen effect on pop-in behaviour
  30. Indentation behaviour of (011) thin films of III–V semiconductors: polarity effect differences between GaAs and InP
  31. Multiwall carbon nanotubes-based composites – mechanical characterization using the nanoindentation technique
  32. Nanoindentation studies of stamp materials for nanoimprint lithography
  33. Experimental and thermodynamic evaluation of the Co–Cr–C system
  34. Applied
  35. Thermodynamics of high-temperature cuprous sulfide
  36. Sintering of Si3N4 with Li-exchanged zeolite additive
  37. Effect of LiYO2 addition on sintering behavior and indentation properties of silicon nitride ceramics
  38. Mechanism of quasi-viscous flow of zinc single crystals
  39. The absolute thermoelectric power of chromium, molybdenum, and tungsten
  40. Modelling of metal – mould interface resistance in the Al-11.5 wt.% Si alloy casting process
  41. Kösterpreis
  42. Award/Preisverleihung
  43. Notifications
  44. Personal
  45. Conferences
Heruntergeladen am 15.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0189/html
Button zum nach oben scrollen