Home Thermodynamics of high-temperature cuprous sulfide
Article
Licensed
Unlicensed Requires Authentication

Thermodynamics of high-temperature cuprous sulfide

  • Minoru Arita EMAIL logo
Published/Copyright: January 21, 2022
Become an author with De Gruyter Brill

Abstract

Published measurements of the diatomic sulfur fugacity were used to make a thermodynamic analysis of high-temperature cuprous sulfide between 789 K and 1321 K. Gibbs–Duhem integration of the fugacity data was used to determine the enthalpy of formation of stoichiometric Cu2S as – 123.8 kJ mol–1. Statistical thermodynamics was applied to find partition functions, interaction energies, and free energies to characterize the configurational aspects of the phase. Theoretical calculations indicated that Cu vacancies might be localized in one half of the Cu lattice sites under quasi-chemical equilibrium.


Dr. Minoru Arita, Division of Materials Engineering, Tokyo Institute of Technology, O-okayama 2-12-1, Meguro-ku, Tokyo, Japan, Tel.: +81 3 5734 3862, Fax: +81 3 5734 2874
M. Arita: Thermodynamics of high-temperature cuprous sulfide

References

[1] D.J. Chakrabarti, D.E. Laughlin: Bul. Alloy Phase Diagrams 4 (1983) 254.10.1007/BF02868665Search in Google Scholar

[2] H. Rau: J. Phys. Chem. Solids 28 (1967) 903.10.1016/0022-3697(67)90205-3Search in Google Scholar

[3] H. Rau: J. Phys. Chem. Solids 35 (1974) 1415.10.1016/S0022-3697(74)80247-7Search in Google Scholar

[4] M. Nagamori: Met. Trans. B 7 (1976) 67.10.1007/BF02652821Search in Google Scholar

[5] R. Peronne, D. Balesdent: J. Chem. Thermodyn. 15 (1983) 295.10.1016/0021-9614(83)90122-2Search in Google Scholar

[6] G. Sick, K. Schwerdtfeger: Met. Trans B 15 (1984) 736.10.1007/BF02657300Search in Google Scholar

[7] J.B. Wagner, C. Wagner: J. Chem. Phys. 26 (1957) 1602.10.1063/1.1743591Search in Google Scholar

[8] V. Wehefritz: Z. Phys. Chem. N. F. 26 (1960) 339.10.1524/zpch.1960.26.5_6.339Search in Google Scholar

[9] A.V. Vanjukov, V.K. Kamjanov, V.P. Bystrov: Freiberg. Forschungsh. B 228 (1981) 37.Search in Google Scholar

[10] S. Stølen, F. Grønvold: J. Chem. Thermodyn. 22 (1990) 1035.10.1016/0021-9614(90)90154-ISearch in Google Scholar

[11] J.-P. Delmaire, H. Le Brusq, A. Duquesnoy, F. Marion: C. R. Acad. Sc. Paris 270 (1970) 1411.Search in Google Scholar

[12] V.K. Pareek, T.A. Ramanarayanan, S. Ling, J.D. Mumford: Solid State Ionics 74 (1994) 263.10.1016/0167-2738(94)90219-4Search in Google Scholar

[13] M. Arita, R. Kinaka, M. Someno: Met. Trans. A 10 (1979) 529.10.1007/BF02658315Search in Google Scholar

[14] Chase MW. NIST-JANAF Thermochemical Tables, 4th ed, (Journal of Physical & Chemical Reference Data Monograph, No. 9), pt. 2 (Cr–Zr). New York (NY): AIP Press (1988) p.1870 (S2, ideal gas); p. 1862 (S, liquid); p. 1009 (Cu, ideal gas).Search in Google Scholar

[15] N. Morimoto, G. Kullerud: Am. Miner. 48 (1963) 110.Search in Google Scholar

[16] M. Arita, K. Shimizu, Y. Ichinose: Met. Trans. A 13 (1982) 1329.10.1007/BF02642869Search in Google Scholar

[17] M. Arita: Acta Mater. 53 (2005) 5241.10.1016/j.actamat.2005.07.037Search in Google Scholar

[18] R.H. Fowler, E.A. Guggenheim: Statistical Thermodynamics. The Cambridge University Press, London, (1965) p. 42 and p. 576.Search in Google Scholar

[19] Von K. Weiss: Ber. Bunsenges. Phys. Chem. 73 (1969) 344.Search in Google Scholar

Received: 2005-08-22
Accepted: 2006-06-12
Published Online: 2022-01-21

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Editorial
  3. Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models
  4. Investigation of SiO2 thin films on Si substrates for use as standards for laser-acoustic measuring devices
  5. Determination of the critical tensile stress of sapphire by spherical indentation with additional lateral forces
  6. The deformation behaviour of electrodeposited nanocrystalline Ni in an atomic force microscope with a newly developed in situ bending machine
  7. In situ electrochemical nanoindentation of a nickel (111) single crystal: hydrogen effect on pop-in behaviour
  8. Indentation behaviour of (011) thin films of III–V semiconductors: polarity effect differences between GaAs and InP
  9. Multiwall carbon nanotubes-based composites – mechanical characterization using the nanoindentation technique
  10. Nanoindentation studies of stamp materials for nanoimprint lithography
  11. Experimental and thermodynamic evaluation of the Co–Cr–C system
  12. Thermodynamics of high-temperature cuprous sulfide
  13. Sintering of Si3N4 with Li-exchanged zeolite additive
  14. Effect of LiYO2 addition on sintering behavior and indentation properties of silicon nitride ceramics
  15. Mechanism of quasi-viscous flow of zinc single crystals
  16. The absolute thermoelectric power of chromium, molybdenum, and tungsten
  17. Modelling of metal – mould interface resistance in the Al-11.5 wt.% Si alloy casting process
  18. Award/Preisverleihung
  19. Personal
  20. Conferences
  21. Contents
  22. Editorial
  23. Editorial
  24. Basic
  25. Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models
  26. Investigation of SiO2 thin films on Si substrates for use as standards for laser-acoustic measuring devices
  27. Determination of the critical tensile stress of sapphire by spherical indentation with additional lateral forces
  28. The deformation behaviour of electrodeposited nanocrystalline Ni in an atomic force microscope with a newly developed in situ bending machine
  29. In situ electrochemical nanoindentation of a nickel (111) single crystal: hydrogen effect on pop-in behaviour
  30. Indentation behaviour of (011) thin films of III–V semiconductors: polarity effect differences between GaAs and InP
  31. Multiwall carbon nanotubes-based composites – mechanical characterization using the nanoindentation technique
  32. Nanoindentation studies of stamp materials for nanoimprint lithography
  33. Experimental and thermodynamic evaluation of the Co–Cr–C system
  34. Applied
  35. Thermodynamics of high-temperature cuprous sulfide
  36. Sintering of Si3N4 with Li-exchanged zeolite additive
  37. Effect of LiYO2 addition on sintering behavior and indentation properties of silicon nitride ceramics
  38. Mechanism of quasi-viscous flow of zinc single crystals
  39. The absolute thermoelectric power of chromium, molybdenum, and tungsten
  40. Modelling of metal – mould interface resistance in the Al-11.5 wt.% Si alloy casting process
  41. Kösterpreis
  42. Award/Preisverleihung
  43. Notifications
  44. Personal
  45. Conferences
Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2006-0198/html
Scroll to top button