Home Effect of LiYO2 addition on sintering behavior and indentation properties of silicon nitride ceramics
Article
Licensed
Unlicensed Requires Authentication

Effect of LiYO2 addition on sintering behavior and indentation properties of silicon nitride ceramics

  • B. Matovic EMAIL logo , G. Rixecker , S. Boskovic and F. Aldinger
Published/Copyright: January 21, 2022
Become an author with De Gruyter Brill

Abstract

The influence of the sintering additive LiYO2 (5– 15 wt.%) on sintering behavior, microstructure and mechanical properties of Si3N4 ceramics was investigated. Since LiYO2 enables densification of Si3N4 at extraordinarily low temperatures, sintering was carried out in the range from 1200– 1700 °C. Densification was found to be enhanced with increasing additive content due to an increasing volume fraction of the liquid. The phase transformation and grain growth occurred through a solution-reprecipitation mechanism, where the precipitation took place preferentially on pre-existing β-Si3N4 nuclei (of which the starting powder already contained 20 wt.%). The indentation fracture toughness increased with both sintering time and additive content as a result of the growth of elongated grains.


Dr. Branko Matovic Vinca Institute for Nuclear Sciences Lab. 170 P.O. Box 522, 11001 Belgrad, Serbia and Montenegro Tel.: 011 2439 454 Fax: 011 2439 454
*Present address: Institute of Nuclear Sciences “Vinca”, Beograd
  1. The authors are grateful to the Max-Planck-Gesellschaft as well as to Ministry of Science and Environmetal Protection of Serbia for financial support.

References

[1] G. Petzow, M. Herrmann, in: M. Jansen (Ed.), Structure and Bonding, Vol. 102, Springer-Verlag, Berlin (2002) 51.Search in Google Scholar

[2] G. Ziegler, J. Heinrich, G. Wötting: J. Mater. Sci. 22 (1987) 3041.10.1007/BF01161167Search in Google Scholar

[3] M. Mitomo, N. Hirosaki, H. Hirotsuru: MRS Bulletin 20 (1995) 38.10.1557/S0883769400049204Search in Google Scholar

[4] B. Matovic, G. Rixecker, F. Aldinger: J. Mater. Sci. Lett. 22 (2003) 91.10.1023/A:1021894232197Search in Google Scholar

[5] B. Matovic, G. Rixecker, F. Aldinger: J. Am. Ceram. Soc. 87 (2004) 546.10.1111/j.1551-2916.2004.00546.xSearch in Google Scholar

[6] C.P. Gazzara, D.R. Messier: J. Am. Ceram. Soc. 78 (1977) 1076.Search in Google Scholar

[7] G.R.P. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall: J. Am. Ceram. Soc. 64 (1981) 533.10.1111/j.1151-2916.1981.tb10320.xSearch in Google Scholar

[8] M. Mitomo, K. Mizumo: J. Ceram. Soc. Jpn. 94 (1986) 96.Search in Google Scholar

[9] H. Yang, G. Yang, R. Yuan: Materials Chem. Phys. 55 (1998) 164.10.1016/S0254-0584(98)00131-XSearch in Google Scholar

[10] I.A. Bondar, L.N. Korolova: Russ. J. Inorg. Chem. (Engl. Transl.) 23 (1978) 900.Search in Google Scholar

[11] G. Petzow, W.A. Kaysser, in: G.S. Upadhyaya (Ed.), Sintered Metal-Ceramic Composites, Elsevier, Amsterdam (1984) 51.Search in Google Scholar

[12] J. Yang, Z. Deng, T. Ohji, K. Niihara, in: T. Sakuma, L. Sheppard, Y. Ikuhara (Eds.), Grain Boundary Engineering in Ceramics, Clearance Center, Danvers (2000) 137.Search in Google Scholar

[13] H. Emoto, H. Hirotsuru, M. Mitomo: Key Eng. Mater. Vol. 159 – 160 (1999) 215.10.4028/www.scientific.net/KEM.159-160.215Search in Google Scholar

[14] M. Kitayama, K. Hirao, M. Toriyama, S. Kanzaki: J. Ceram. Soc. Jpn. 107 (1999) 10.10.2109/jcersj.107.995Search in Google Scholar

[15] L.J. Bowen, R.J. Weston, T.G. Carruthers, R.J. Brook: J. Mater. Sci. 13 (1978) 341.10.1007/BF00647779Search in Google Scholar

[16] H.J. Kleebe, G. Pezzotti, G. Ziegler: J. Am. Ceram. Soc. 82 (1999) 1857.10.1111/j.1151-2916.1999.tb02009.xSearch in Google Scholar

[17] J.L. Iskoa, F.F. Lange, in: R.M. Fuhalti, J.A. Pask (Eds.), Ceramic Microstructures, Westview Press, Boulder (1977) 381.Search in Google Scholar

[18] M. Krämer, M.J. Hoffmann, G. Petzow: Acta. Metall. Mater. 41 (1993) 2939.10.1016/0956-7151(93)90108-5Search in Google Scholar

[19] M. Herrmann, I. Schulz, W. Hermel, Chr. Schubert, A. Wendt: Z. Metallkd. 92 (2001) 788.10.1515/ijmr-2001-0145Search in Google Scholar

[20] P.F. Becher, C.H. Hsueh, P. Angelini, T.N. Tieges: J. Am. Ceram. Soc. 71 (1988) 1050.10.1111/j.1151-2916.1988.tb05791.xSearch in Google Scholar

[21] K. Jokoyama, S. Wada: J. Ceram. Soc. Jpn. 108 (2000) 6.10.2109/jcersj.108.6Search in Google Scholar

[22] A.J. Pyzik, D.R. Beaman: J. Am. Ceram. Soc. 76 (1993) 2737.10.1111/j.1151-2916.1993.tb04010.xSearch in Google Scholar

[23] P. Sajgalik, J. Dusza, M.J. Hoffmann: J. Am. Ceram. Soc. 78 (1995) 2619.10.1111/j.1151-2916.1995.tb08031.xSearch in Google Scholar

Received: 2004-11-02
Accepted: 2006-06-12
Published Online: 2022-01-21

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Editorial
  3. Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models
  4. Investigation of SiO2 thin films on Si substrates for use as standards for laser-acoustic measuring devices
  5. Determination of the critical tensile stress of sapphire by spherical indentation with additional lateral forces
  6. The deformation behaviour of electrodeposited nanocrystalline Ni in an atomic force microscope with a newly developed in situ bending machine
  7. In situ electrochemical nanoindentation of a nickel (111) single crystal: hydrogen effect on pop-in behaviour
  8. Indentation behaviour of (011) thin films of III–V semiconductors: polarity effect differences between GaAs and InP
  9. Multiwall carbon nanotubes-based composites – mechanical characterization using the nanoindentation technique
  10. Nanoindentation studies of stamp materials for nanoimprint lithography
  11. Experimental and thermodynamic evaluation of the Co–Cr–C system
  12. Thermodynamics of high-temperature cuprous sulfide
  13. Sintering of Si3N4 with Li-exchanged zeolite additive
  14. Effect of LiYO2 addition on sintering behavior and indentation properties of silicon nitride ceramics
  15. Mechanism of quasi-viscous flow of zinc single crystals
  16. The absolute thermoelectric power of chromium, molybdenum, and tungsten
  17. Modelling of metal – mould interface resistance in the Al-11.5 wt.% Si alloy casting process
  18. Award/Preisverleihung
  19. Personal
  20. Conferences
  21. Contents
  22. Editorial
  23. Editorial
  24. Basic
  25. Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models
  26. Investigation of SiO2 thin films on Si substrates for use as standards for laser-acoustic measuring devices
  27. Determination of the critical tensile stress of sapphire by spherical indentation with additional lateral forces
  28. The deformation behaviour of electrodeposited nanocrystalline Ni in an atomic force microscope with a newly developed in situ bending machine
  29. In situ electrochemical nanoindentation of a nickel (111) single crystal: hydrogen effect on pop-in behaviour
  30. Indentation behaviour of (011) thin films of III–V semiconductors: polarity effect differences between GaAs and InP
  31. Multiwall carbon nanotubes-based composites – mechanical characterization using the nanoindentation technique
  32. Nanoindentation studies of stamp materials for nanoimprint lithography
  33. Experimental and thermodynamic evaluation of the Co–Cr–C system
  34. Applied
  35. Thermodynamics of high-temperature cuprous sulfide
  36. Sintering of Si3N4 with Li-exchanged zeolite additive
  37. Effect of LiYO2 addition on sintering behavior and indentation properties of silicon nitride ceramics
  38. Mechanism of quasi-viscous flow of zinc single crystals
  39. The absolute thermoelectric power of chromium, molybdenum, and tungsten
  40. Modelling of metal – mould interface resistance in the Al-11.5 wt.% Si alloy casting process
  41. Kösterpreis
  42. Award/Preisverleihung
  43. Notifications
  44. Personal
  45. Conferences
Downloaded on 2.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0200/html
Scroll to top button