Home Multiwall carbon nanotubes-based composites – mechanical characterization using the nanoindentation technique
Article
Licensed
Unlicensed Requires Authentication

Multiwall carbon nanotubes-based composites – mechanical characterization using the nanoindentation technique

  • M. Olek EMAIL logo , K. Kempa and M. Giersig
Published/Copyright: January 21, 2022
Become an author with De Gruyter Brill

Abstract

We report on mechanical properties of multiwall carbon nanotubes (MWNTs)-polymer composites using the nanoindentation technique. The nanoindentation experiments conducted on thin films containing MWNTs revealed that the presence of nanotubes does not affect the nanomechanical properties of the composites. Even a layer-by-layer assembly of MWNTs with a high concentration and a homogeneous distribution of carbon nanotubes does not ensure reinforcement of the composites. For that reason, we synthesized and utilized carbon nanotubes with a silica shell. Nanohardness and Young’s modulus have been found to increase strongly with increasing content of these nanotubes in the polymer matrix. The silica shell on the surface of a nanotube enhances its stiffness and rigidity. Our composites, at 4 wt.% of the silica-coated MWNTs, display a maximum hardness of 120 ± 20 MPa and a Young’s modulus of 9 ± 1 GPa. These are, respectively, 2 and 3 times higher than those for the polymeric matrix.


Maciej Olek, CAESAR, Ludwig-Erhard-Allee 2, D-53175 Bonn, Germany, Tel.: +49 228 9656 322, Fax: +49 228 9656 187

References

[1] M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff: Science 287 (2000) 637.10.1126/science.287.5453.637Search in Google Scholar

[2] P.M. Ajayan: Chem. Rev. 99 (1999) 1787.10.1021/cr970102gSearch in Google Scholar

[3] J.P. Salvetat, A.J. Kulik, J.M. Bonard, A.D. Briggs, T. Stöckli, K. Metenier, S. Bonnamy, F. Beguin, N. Burnham, L. Forró: Adv. Mater. 11 (1999) 161.10.1002/(SICI)1521-4095(199902)11:2<161::AID-ADMA161>3.0.CO;2-JSearch in Google Scholar

[4] D. Li, X. Zhang, G. Sui, D. Wu, J. Liang: J. Mater. Sci. Lett. 22 (2003) 791.10.1023/A:1023991522083Search in Google Scholar

[5] M. Olek, J. Ostrander, S. Jurga, H. Möhwald, N. Kotov, K. Kempa, M. Giersig: Nano Lett. 4 (2004) 1889.10.1021/nl048950wSearch in Google Scholar

[6] C. Klapperich, K. Komvopoulos, L. Pruit: J. Tribology 123 (2001) 624.10.1115/1.1330736Search in Google Scholar

[7] B.J. Briscoe, L. Fiori, E. Pelillo: J. Phys. D: Appl. Phys. 31 (1998) 2395.10.1088/0022-3727/31/19/006Search in Google Scholar

[8] Y. Qin, L. Liu, J. Shi, W. Wu, J. Zhang, Z.X. Guo, Y. Li, D. Zhu: Chem. Mater. 15 (2003) 3256.10.1021/cm030219nSearch in Google Scholar

[9] E.W. Wong, P.E. Sheehan: Science 277 (1997) 1971.10.1126/science.277.5334.1971Search in Google Scholar

[10] K. Kempa, M. Olek, M. Correa, M. Giersig, M. Cross, G. Benham, M. Sennett, D. Carnahan, T. Kempa, Z. Ren: J. Appl. Phys. 98 (2005) 34310.10.1063/1.1996836Search in Google Scholar

[11] M. Olek, K. Kempa, S. Jurga, M. Giersig: Langmuir 21 (2005) 3146.10.1021/la0470784Search in Google Scholar PubMed

Received: 2006-02-08
Accepted: 2006-03-01
Published Online: 2022-01-21

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Editorial
  3. Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models
  4. Investigation of SiO2 thin films on Si substrates for use as standards for laser-acoustic measuring devices
  5. Determination of the critical tensile stress of sapphire by spherical indentation with additional lateral forces
  6. The deformation behaviour of electrodeposited nanocrystalline Ni in an atomic force microscope with a newly developed in situ bending machine
  7. In situ electrochemical nanoindentation of a nickel (111) single crystal: hydrogen effect on pop-in behaviour
  8. Indentation behaviour of (011) thin films of III–V semiconductors: polarity effect differences between GaAs and InP
  9. Multiwall carbon nanotubes-based composites – mechanical characterization using the nanoindentation technique
  10. Nanoindentation studies of stamp materials for nanoimprint lithography
  11. Experimental and thermodynamic evaluation of the Co–Cr–C system
  12. Thermodynamics of high-temperature cuprous sulfide
  13. Sintering of Si3N4 with Li-exchanged zeolite additive
  14. Effect of LiYO2 addition on sintering behavior and indentation properties of silicon nitride ceramics
  15. Mechanism of quasi-viscous flow of zinc single crystals
  16. The absolute thermoelectric power of chromium, molybdenum, and tungsten
  17. Modelling of metal – mould interface resistance in the Al-11.5 wt.% Si alloy casting process
  18. Award/Preisverleihung
  19. Personal
  20. Conferences
  21. Contents
  22. Editorial
  23. Editorial
  24. Basic
  25. Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models
  26. Investigation of SiO2 thin films on Si substrates for use as standards for laser-acoustic measuring devices
  27. Determination of the critical tensile stress of sapphire by spherical indentation with additional lateral forces
  28. The deformation behaviour of electrodeposited nanocrystalline Ni in an atomic force microscope with a newly developed in situ bending machine
  29. In situ electrochemical nanoindentation of a nickel (111) single crystal: hydrogen effect on pop-in behaviour
  30. Indentation behaviour of (011) thin films of III–V semiconductors: polarity effect differences between GaAs and InP
  31. Multiwall carbon nanotubes-based composites – mechanical characterization using the nanoindentation technique
  32. Nanoindentation studies of stamp materials for nanoimprint lithography
  33. Experimental and thermodynamic evaluation of the Co–Cr–C system
  34. Applied
  35. Thermodynamics of high-temperature cuprous sulfide
  36. Sintering of Si3N4 with Li-exchanged zeolite additive
  37. Effect of LiYO2 addition on sintering behavior and indentation properties of silicon nitride ceramics
  38. Mechanism of quasi-viscous flow of zinc single crystals
  39. The absolute thermoelectric power of chromium, molybdenum, and tungsten
  40. Modelling of metal – mould interface resistance in the Al-11.5 wt.% Si alloy casting process
  41. Kösterpreis
  42. Award/Preisverleihung
  43. Notifications
  44. Personal
  45. Conferences
Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0195/html
Scroll to top button