Home Mechanism of quasi-viscous flow of zinc single crystals
Article
Licensed
Unlicensed Requires Authentication

Mechanism of quasi-viscous flow of zinc single crystals

  • Krzysztof Pieła EMAIL logo
Published/Copyright: January 21, 2022
Become an author with De Gruyter Brill

Abstract

This paper reports the results of mechanical investigations (tensile and relaxation tests), geometrical measurements as well as macro- and microscopic (slip traces) observations of zinc single crystals in the ‘hard’ orientation (from the line [1120] – [1010] of the standard triangle) tested in the temperature range 523– 673 K. Consideration of the experimental data lead to the conclusion that the quasi-viscous flow of crystals results from localized coarse slip in the basal system occurring in the structure of uniformly distributed slip in the 1st order prismatic (and/or the 1st order pyramidal) systems. The proposed mechanism explains the high strain-rate sensitivity and the ‘jerky’ character of the flow of the crystals.


Dr. Ing. Krzysztof Pieła Department of Structure & Mechanics of Solids University of Science and Technology – AGH Al. Mickiewicza 30, 30-059 Cracow, Poland Tel.: +48 12 617 36 04 Fax: +48 12 632 56 15

  1. Financial support from the Polish State Committee for Scientific Research (under grant no. 11.11.180.134) is greatly appreciated

References

[1] J.J. Gilman: Trans. AIME 206 (1956) 1326.10.1007/BF03377877Search in Google Scholar

[2] J.J. Gilman: Trans. AIME 221 (1961) 456.Search in Google Scholar

[3] W.R. Regel, W.G. Govorkow: Kristallografia 4 (1959) 878.Search in Google Scholar

[4] H. Yoshinaga, R. Horiuchi: Trans. JIM 4 (1963) 134.10.2320/matertrans1960.4.134Search in Google Scholar

[5] H. Yoshinaga, R. Horiuchi: Trans. JIM 5 (1963) 14.10.2320/matertrans1960.5.14Search in Google Scholar

[6] R.E. Reed-Hill, W.D. Robertson: Trans. AIME 209 (1957) 496.10.1007/BF03397907Search in Google Scholar

[7] A. Akhtar: Met. Trans. A 6 (1975) 1217.10.1007/BF02658531Search in Google Scholar

[8] J. Friedel: Internal Stresses and Fracture in Metals, Elsevier, Amsterdam (1959).Search in Google Scholar

[9] B. Escaig: Phys. Stat. Sol. 28 (1968) 463.10.1002/pssb.19680280203Search in Google Scholar

[10] A. Akhtar: Met. Trans. A 6 (1975) 1105.10.1007/BF02645537Search in Google Scholar

[11] A. Akhtar: Acta Met. 21 (1973) 1.10.1016/0001-6160(73)90213-7Search in Google Scholar

[12] A. Akhtar: J. Nucl. Mater. 47 (1973) 79.10.1016/0022-3115(73)90189-XSearch in Google Scholar

[13] R.W. Cahn, I.J. Bear, R.L.J. Bell: J. Inst. Metals 82 (1953–54) 481.Search in Google Scholar

[14] P. Regnier, J.M. Dupouy: Phys. Stat. Sol. 39 (1970) 79.10.1002/pssb.19700390110Search in Google Scholar

[15] T. Hondoh, H. Iwamatsu, S. Mae: Phil. Mag. A 62 (1990) 89.10.1080/01418619008244337Search in Google Scholar

[16] U. Urakami, M. Meshi, M.E. Fine: Acta Met. 18 (1970) 87.10.1016/0001-6160(70)90072-6Search in Google Scholar

[17] H.T. Lee, R.M. Brick: Trans. ASM. 48 (1956) 1003.Search in Google Scholar

[18] S. Naka, A. Lasalmonie: J. Mater. Sci. 18 (1983) 2613.10.1007/BF00547577Search in Google Scholar

[19] S. Naka, A. Lasalmonie: Mater. Sci. Eng. 56 (1982) 19.10.1016/0025-5416(82)90178-1Search in Google Scholar

[20] A. Couret, D. Caillard: Acta Met. 33 (1985) 1447.10.1016/0001-6160(85)90045-8Search in Google Scholar

[21] A. Couret, D. Caillard: Phil. Mag. A 63 (1991) 1045.10.1080/01418619108213936Search in Google Scholar

[22] P.W. Flynn, J. Mote, J.E. Dorn: Trans. AIME 221 (1961) 1148.Search in Google Scholar

[23] J. Wesołowski, K. Pieła: Z. Metallkd. 11 (1992) 797.Search in Google Scholar

[24] Z.S. Basinski, P.J. Jackson: Phys. Stat. Sol. 9 (1965) 45, ibid. 805.10.1002/pssb.19650090318Search in Google Scholar

[25] P.J. Jackson, Z.S. Basinski: Canad. J. Phys. 45 (1967) 707.10.1139/p67-055Search in Google Scholar

[26] F.F. Lawrientiew, O.R. Salita, S.V. Sokolski: Phys. Stat. Sol. A 54 (1979) 145.10.1002/pssa.2210540119Search in Google Scholar

[27] J.-P. Michel, G. Champier: Mater. Sci. Eng. 52 (1982) 63.10.1016/0025-5416(82)90069-6Search in Google Scholar

[28] H. Dybiec, A. Korbel: Mater. Sci. Eng. A 117 (1989) L 31.10.1016/0921-5093(89)90116-0Search in Google Scholar

Received: 2005-12-01
Accepted: 2006-06-14
Published Online: 2022-01-21

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Editorial
  3. Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models
  4. Investigation of SiO2 thin films on Si substrates for use as standards for laser-acoustic measuring devices
  5. Determination of the critical tensile stress of sapphire by spherical indentation with additional lateral forces
  6. The deformation behaviour of electrodeposited nanocrystalline Ni in an atomic force microscope with a newly developed in situ bending machine
  7. In situ electrochemical nanoindentation of a nickel (111) single crystal: hydrogen effect on pop-in behaviour
  8. Indentation behaviour of (011) thin films of III–V semiconductors: polarity effect differences between GaAs and InP
  9. Multiwall carbon nanotubes-based composites – mechanical characterization using the nanoindentation technique
  10. Nanoindentation studies of stamp materials for nanoimprint lithography
  11. Experimental and thermodynamic evaluation of the Co–Cr–C system
  12. Thermodynamics of high-temperature cuprous sulfide
  13. Sintering of Si3N4 with Li-exchanged zeolite additive
  14. Effect of LiYO2 addition on sintering behavior and indentation properties of silicon nitride ceramics
  15. Mechanism of quasi-viscous flow of zinc single crystals
  16. The absolute thermoelectric power of chromium, molybdenum, and tungsten
  17. Modelling of metal – mould interface resistance in the Al-11.5 wt.% Si alloy casting process
  18. Award/Preisverleihung
  19. Personal
  20. Conferences
  21. Contents
  22. Editorial
  23. Editorial
  24. Basic
  25. Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models
  26. Investigation of SiO2 thin films on Si substrates for use as standards for laser-acoustic measuring devices
  27. Determination of the critical tensile stress of sapphire by spherical indentation with additional lateral forces
  28. The deformation behaviour of electrodeposited nanocrystalline Ni in an atomic force microscope with a newly developed in situ bending machine
  29. In situ electrochemical nanoindentation of a nickel (111) single crystal: hydrogen effect on pop-in behaviour
  30. Indentation behaviour of (011) thin films of III–V semiconductors: polarity effect differences between GaAs and InP
  31. Multiwall carbon nanotubes-based composites – mechanical characterization using the nanoindentation technique
  32. Nanoindentation studies of stamp materials for nanoimprint lithography
  33. Experimental and thermodynamic evaluation of the Co–Cr–C system
  34. Applied
  35. Thermodynamics of high-temperature cuprous sulfide
  36. Sintering of Si3N4 with Li-exchanged zeolite additive
  37. Effect of LiYO2 addition on sintering behavior and indentation properties of silicon nitride ceramics
  38. Mechanism of quasi-viscous flow of zinc single crystals
  39. The absolute thermoelectric power of chromium, molybdenum, and tungsten
  40. Modelling of metal – mould interface resistance in the Al-11.5 wt.% Si alloy casting process
  41. Kösterpreis
  42. Award/Preisverleihung
  43. Notifications
  44. Personal
  45. Conferences
Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0201/html
Scroll to top button