Home Technology The deformation response of ultra-thin polymer films on steel sheet in a tensile straining test: the role of slip bands emerging at the polymer/metal interface
Article
Licensed
Unlicensed Requires Authentication

The deformation response of ultra-thin polymer films on steel sheet in a tensile straining test: the role of slip bands emerging at the polymer/metal interface

  • Birgit Baumert , Martin Stratmann and Michael Rohwerder EMAIL logo
Published/Copyright: February 14, 2022

Abstract

Forming of pre-coated sheet metal becomes of increasing importance in various fields of industrial application. In the recent years, ultra-thin plasma-polymer films have emerged as promising candidates as pre-treatments for steel sheet. Not much, however, is known about the forming behaviour of ultra-thin polymer coatings on ductile substrates, while an extensive literature exists for the reverse case, metal films on polymer, or brittle films on deformable substrates in general. For these cases, advanced models exist, mostly based on the so-called shear lag approximation. The heterogenous, highly localized strain and stress distribution, typical of ductile substrates, as well as out of plane displacements at the interface are disregarded, but cannot be neglected at the high strain levels of interest for elastic polymer films. This paper will focus on the role of slip bands on cracking of ultra-thin polymer films.


Dedicated to Professor Dr. Peter Neumann on the occasion of his 65th birthday

Dr. Michael Rohwerder Max-Planck-Institut für Eisenforschung Max-Planck-Str. 1 D-40237 Düsseldorf, Germany Tel.: +49 211 6792 442 Fax: +49 211 6792 218

References

[1] M.S. Hu, A.G. Evans: Acta metall. 37 (1989) 917.10.1016/0001-6160(89)90018-7Search in Google Scholar

[2] P.B. Kirk, R.M. Pilliar: J. Mater. Sci. 34 (1999) 3967.10.1023/A:1004695427839Search in Google Scholar

[3] P.M. Ramsey, H.W. Chandler, T.F. Page: Thin Solid Films 201 (1991) 81.10.1016/0040-6090(91)90156-RSearch in Google Scholar

[4] B.F. Chen, J. Hwang, I.F. Chen, G.P. Yu, J.-H. Huang: Surf. and Coat. Technol. 126 (2000) 91.10.1016/S0257-8972(99)00669-6Search in Google Scholar

[5] A.P. McGuigan, G.A.D. Briggs, V.M. Burlakov, M. Yanaka, Y. Tsukahara: Thin Solid Films 424 (2003) 219.10.1016/S0040-6090(02)01124-0Search in Google Scholar

[6] C. Hsueh, M. Yanaka: J. Mater. Sci. 38 (2003) 1809.10.1023/A:1023200415364Search in Google Scholar

[7] P.H. Wojciechowski, M.S. Mendolia: J. Vac. Sci. Technol. A 7 1282.10.1116/1.576270Search in Google Scholar

[8] P.H. Wojciechowski, M.S. Mendolia: Phys. Thin Films 16 (1992) 271.10.1016/B978-0-12-533016-9.50009-8Search in Google Scholar

[9] J. Friedel: Dislocations, Pergamon, Oxord (1964).10.1016/B978-0-08-013523-6.50011-9Search in Google Scholar

[10] J.P. Hirth, J. Lothe: Theory of Dislocations, McGraw-Hill, New York (1968).Search in Google Scholar

[11] D. Hull: Introduction to Dislocations, Pergamon, Oxford (1975).Search in Google Scholar

[12] E. Schmid, W. Boas: Kristallplastizität, Springer, Berlin (1936).10.1007/978-3-662-34532-0Search in Google Scholar

[13] D. Raabe, M. Sachtleber, H. Weiland, G. Scheele, Z. Zhao: Acta Mater. 51 (2003) 1539.10.1016/S1359-6454(02)00557-8Search in Google Scholar

[14] A.C. Bastos, A.M.P. Simões: Progress in Organic Coatings 46 (2003) 220.10.1016/S0300-9440(02)00191-1Search in Google Scholar

[15] H.K. Yasuda, T.F. Wang, D.L. Cho, T.J. Lin, J.A. Antonelli: Prog. Org. Coat. 30 (1997) 31.10.1016/S0300-9440(96)00651-0Search in Google Scholar

[16] G. Grundmeier, M. Stratmann: Mater. Corros. 49 (1998) 150.10.1002/(SICI)1521-4176(199803)49:3<150::AID-MACO150>3.0.CO;2-XSearch in Google Scholar

[17] G. Grundmeier, P. Thiemann, J. Carpentier, V. Barranco: Surf. and Coat. Technol. 174–175 (2003) 996.10.1016/S0257-8972(03)00606-6Search in Google Scholar

[18] G. Grundmeier, M. Brettmann, P. Thiemann: Appl. Surf. Sci. 217 (2003) 223.10.1016/S0169-4332(03)00548-8Search in Google Scholar

[19] M. Rohwerder, E. Hornung, M. Stratmann: Electrochim. Acta 48 (2003) 1235.10.1016/S0013-4686(02)00831-9Search in Google Scholar

[20] W. Bleck, I. Schael: Steel Research 71 (2000) 173.10.1002/srin.200005709Search in Google Scholar

[21] N. Shirtcliffe, P. Thiemann, M. Stratmann, G. Grundmeier: Surface and Coatings Technology 142–144 (2001) 1121.10.1016/S0257-8972(01)01226-9Search in Google Scholar

[22] B. Baumert, M. Stratmann, M. Rohwerder: Mat. Res. Soc. Symp. Proc. 795 (2004) U5.23.1.10.1557/PROC-795-U5.23Search in Google Scholar

[23] D.C. Agrawal, R. Raj: Acta Metall. 37 (1989) 1265.10.1016/0001-6160(89)90120-XSearch in Google Scholar

[24] A. Malthe-Sørenssen, T. Walmann, J. Feder, T. Jøssang, P. Meakin, H.H. Hardy: Phys. Rev. E 58 (1998) 5549.10.1103/PhysRevE.58.5548Search in Google Scholar

[25] I.M. Sokolov, A. Blumen: Physica A 266 (1999) 299.10.1016/S0378-4371(98)00606-2Search in Google Scholar

[26] U.A. Handge, I.M. Sokolov, A. Blumen: Phys. Rev. E 64 (2001) 16109.10.1103/PhysRevE.64.016109Search in Google Scholar PubMed

[27] U.A. Handge: J. Mater. Sci. 37 (2002) 4475.10.1023/A:1020814314019Search in Google Scholar

Received: 2004-01-27
Accepted: 2004-03-11
Published Online: 2022-02-14

© 2004 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles Basic
  5. Thermally assisted motion of dislocations in solid solution-strengthened fcc alloys and the concept of “stress equivalence”
  6. From single to collective dislocation glide instabilities: A hierarchy of scales, embracing the Neumann strain bursts
  7. Geometry and surface state effects on the mechanical response of Au nanostructures
  8. Microstructural evolution and its effect on the mechanical properties of Cu–Ag microcomposites
  9. Deformation behaviour of strontium titanate between room temperature and 1800 K under ambient pressure
  10. The deformation response of ultra-thin polymer films on steel sheet in a tensile straining test: the role of slip bands emerging at the polymer/metal interface
  11. Influence of dissolved gas molecules on the size recovery kinetics of cold-rolled BPA-PC
  12. Comparison between Monte Carlo and Cluster Variation method calculations in the BCC Fe–Al system including tetrahedron interactions
  13. Experimental study and Cluster Variation modelling of the A2/B2 equilibria at the titanium-rich side of the Ti–Fe system
  14. Phases and phase equilibria in the Fe–Al–Zr system
  15. On the plate-like τ-phase formation in MnAl–C alloys
  16. Articles Applied
  17. The grain boundary hardness in austenitic stainless steels studied by nanoindentations
  18. The effect of grain size on the mechanical properties of nanonickel examined by nanoindentation
  19. Microstructures and mechanical properties of V–V3Si eutectic composites
  20. Grain boundary characterization and grain size measurement in an ultrafine-grained steel
  21. On the determination of the volume fraction of Ni4Ti3 precipitates in binary Ni-rich NiTi shape memory alloys
  22. Mechanical properties of NiAl–Cr alloys in relation to microstructure and atomic defects
  23. Characterization of the cyclic deformation behaviour and fatigue crack initiation on titanium in physiological media by electrochemical techniques
  24. Effect of prestraining on high-temperature fatigue behaviour of two Ni-base superalloys
  25. Influence of surface defects and edge geometry on the bending strength of slip-cast ZrO2 micro-specimens
  26. Tensile failure in a superplastic alumina
  27. Notifications/Mitteilungen
  28. Personal/Personelles
  29. Conferences/Konferenzen
Downloaded on 6.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2004-0092/html?lang=en
Scroll to top button