Startseite Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means

  • H.-J. Fecht EMAIL logo
Veröffentlicht/Copyright: 7. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Mechanical attrition, mechanical alloying and other methods of extreme plastic deformation (high pressure torsion, equal channel angular pressing) have been developed as versatile alternatives to other physical and chemical processing routes in preparing nanophase materials. Here several examples are discussed including the deformation-induced nanophase formation in powder particles, in thin-foil sandwich structures and at the surface of alloys exposed to friction-induced wear, leading to the formation of nanocrystals and, in some cases, amorphous nanostructures. This opens exciting perspectives in preparing nanostructured materials with a number of different interface types in terms of structure (crystalline/crystalline, crystalline/amorphous) as well as atomic bond (metal/metal, metal/semiconductor, metal/ ceramic etc.). It is expected that the study of nanostructure formation by mechanical means in the future not only opens new processing routes for a variety of advanced nanophase materials but also improves the understanding of technologically relevant deformation processes on a nanoscopic level.


Prof. Dr. H.-J. Fecht University of Ulm, Materials Division Albert Einstein Allee 47, D-89081 Ulm, Germany Research Center Karlsruhe, Institute of Nanotechnology D-76021 Karlsruhe, Germany Tel.: +49 731 502 5490 Fax: +49 731 502 5488 ()

Dedicated to Professor Dr. Dr. h. c. Herbert Gleiter on the occasion of his 65th birthday


  1. The financial support by the Deutsche Forschungsgemeinschaft (G. W. Leibniz programme, grant Fe 313/11-1) and the collaboration with W. L. Johnson, J. H. Perepezko, A. Sagel, R. Wunderlich and I. Manna are gratefully acknowledged.

References

[1] W. Lojkowski, H.-J. Fecht: Progr. Mater. Sci. 45 (2000) 339.10.1016/S0079-6425(99)00008-0Suche in Google Scholar

[2] H.-J. Fecht: Phys. Rev. Lett. 65 (1990) 610.10.1103/PhysRevLett.65.610Suche in Google Scholar

[3] H.-J. Fecht, H. Gleiter: Acta Metall. 33 (1985) 557.10.1016/0001-6160(85)90019-7Suche in Google Scholar

[4] H. Gleiter, in: R.W. Cahn, P. Haasen (Eds.), Physical Metallurgy, Elsevier Amsterdam (1983) 650.Suche in Google Scholar

[5] H. Kuwano, H. Ouyang, B. Fultz: Nanostr. Mater. 1 (1992) 143.10.1016/0965-9773(92)90067-8Suche in Google Scholar

[6] H. Gleiter: Progr. Mater. Sci. 33 (1989) 223.10.1016/0079-6425(89)90001-7Suche in Google Scholar

[7] H.-J. Fecht, in: Nanomaterial Synthesis, Properties and Applications, A. Edelstein, B. Camarata (Eds.), Institute of Physics Pub., Bristol, Philadelphia (1996) 89.Suche in Google Scholar

[8] H.-J. Fecht, in: Nanostructured Materials, C.C. Koch (Ed.), Noyes Publications, New York (2002) 73.Suche in Google Scholar

[9] C.C. Koch: Nanostr. Mater. 2 (1993) 109.10.1016/0965-9773(93)90016-5Suche in Google Scholar

[10] A. Kehrel, C. Moelle, H.J. Fecht, in: Nanophase Materials, G.C. Hadjipanayis, R.W. Siegel (Eds.), Kluwer Acad. Publ. New York (1994) 287.10.1007/978-94-011-1076-1_34Suche in Google Scholar

[11] C. Moelle, H.J. Fecht: Nanostr. Mater. 3 (1993) 93.10.1016/0965-9773(93)90067-LSuche in Google Scholar

[12] K. Yasuna, M. Terauchi, A. Otsuki, K.N. Ishihara, P.H. Shingu: J. Appl. Phys. 82 (1997) 2435.10.1063/1.366052Suche in Google Scholar

[13] G.F. Zhou, H. Bakker: Phys. Rev. Lett. 72 (1994) 2290.10.1103/PhysRevLett.72.2290Suche in Google Scholar PubMed

[14] W.E. Kuhn, I.L. Friedmann, W. Summers, A. Szegvari: ASM Metals Handbook, Vol. 7, Powder Metallurgy, Metals Park, OH (1985) 56.Suche in Google Scholar

[15] H.-E. Schaefer, R. Würschum, T. Gessmann, G. Stöckl, P. Scharwaechter, W. Frank, R.Z. Valiev, H.-J. Fecht, C. Moelle: Nanostr. Mater. 6 (1995) 869.10.1016/0965-9773(95)00197-2Suche in Google Scholar

[16] W.L. Johnson: Progr. Mater. Sci. 30 (1986) 81.10.1016/0079-6425(86)90005-8Suche in Google Scholar

[17] G. Baumann, H.-J. Fecht, S. Liebelt: Wear 191 (1996) 133.10.1016/0043-1648(95)06733-7Suche in Google Scholar

[18] H.-J. Fecht, E. Hellstern, Z. Fu, W. L. Johnson: Metall. Trans. A 21 (1990) 2333.10.1007/BF02646980Suche in Google Scholar

[19] F. Miani, H.-J. Fecht: Int. J. Refract. Met. Hard Mater. 17 (1999) 133.10.1016/S0263-4368(98)00068-7Suche in Google Scholar

[20] G.K. Williamson, W.H. Hall: Acta Metall. 1 (1953) 22.10.1016/0001-6160(53)90006-6Suche in Google Scholar

[21] C.N.J. Wagner, M.S. Boldrick: J. Mater. Sci. Eng. A 133 (1991) 26.10.1016/0921-5093(91)90008-BSuche in Google Scholar

[22] A. Guinier: X-ray Diffraction, W.H. Freemand and Comp., San Francisco (1963)121.Suche in Google Scholar

[23] H.-J. Fecht, C. Moelle: Mater. Res. Soc. Symposium Proceedings, Nanophase and Nanocomposite Materials II, 457 (1997) 113.10.1557/PROC-457-113Suche in Google Scholar

[24] B.E. Warren, B.L. Averbach: J. Appl. Phys. 21 (1950) 595.10.1063/1.1699713Suche in Google Scholar

[25] J. Friedel: Dislocations, Pergamon Press, Oxford (1964) 418.10.1016/B978-0-08-013523-6.50011-9Suche in Google Scholar

[26] H.-J. Fecht, G. Han, Z. Fu, W.L. Johnson: J. Appl. Phys. 67 (1990) 1744.10.1063/1.345624Suche in Google Scholar

[27] A. Sagel, R.K. Wunderlich, J.H. Perepezko, H.-J. Fecht: Appl. Phys. Lett. 70 (1997) 580.10.1063/1.118280Suche in Google Scholar

[28] A. Sagel, N. Wanderka, R.K. Wunderlich, N. Schubert–Bischoff, H.-J. Fecht: Scripta Mater. 38 (1998) 163.10.1016/S1359-6462(97)00408-9Suche in Google Scholar

[29] K. Samwer, H.-J. Fecht, W.L. Johnson, in: Glassy Metals III, Topics in Applied Physics, Vol. 72, Beck/Güntherodt, Springer Verlag Heidelberg (1994) 6.Suche in Google Scholar

[30] M. Atzmon, K.M. Unruh, W.L. Johnson: J. Appl. Phys. 58 (1985) 3865.10.1063/1.335604Suche in Google Scholar

[31] F. Bourdeaux, A.R. Yavari: J. Appl. Phys. 67 (1990) 2385.10.1063/1.345540Suche in Google Scholar

[32] L.C. Chen, F. Spaepen: J. Appl. Phys. 69 (1991) 679.10.1063/1.347349Suche in Google Scholar

[33] A. Tschöpe, R. Birringer, H. Gleiter: J. Appl. Phys. 71 (1992) 5391.10.1063/1.350560Suche in Google Scholar

[34] D. Wolf: Phil. Mag. A 62 (1990) 447.10.1080/01418619008244790Suche in Google Scholar

[35] F. Haessner, W. Hemminger: Z. Metallkd. 69 (1978) 553.10.1515/ijmr-1978-690901Suche in Google Scholar

[36] D.J. Lloyd, D. Kenny: Scripta Metall. 12 (1978) 903.10.1016/0036-9748(78)90179-5Suche in Google Scholar

[37] J.C. Grosskreutz, H. Mughrabi, in: Constitutive Equations in Plasticity, A.S. Argon (Ed.), MIT Press, Cambridge, Massachusetts (1971) 251.Suche in Google Scholar

[38] J.J. Gilman: J. Appl. Phys. 46 (1975) 1625.10.1063/1.321764Suche in Google Scholar

[39] P.E. Donovan, W.M. Stobbs: Acta Metall. 31 (1983) 1.10.1016/0001-6160(83)90057-3Suche in Google Scholar

[40] M. Hatherly, A.S. Malin: Scripta Metall. 18 (1984) 449.10.1016/0036-9748(84)90419-8Suche in Google Scholar

[41] R.B. Schwarz, W.L. Johnson: J. Less Comm. Met. 140 (1988), 1.10.1016/0022-5088(88)90361-XSuche in Google Scholar

[42] P.H. Shingu: Mater. Sci. Forum 302 (1992) 88.Suche in Google Scholar

[43] H.-J. Fecht, Z. Fu,W.L. Johnson: Phys. Rev. Lett. 64 (1990) 1753.10.1103/PhysRevLett.64.1753Suche in Google Scholar PubMed

[44] H.-J. Fecht, W.L. Johnson: Nature 334 (1988) 50.10.1038/334050a0Suche in Google Scholar

[45] H.-J. Fecht: Nature 356 (1992).10.1038/356133a0Suche in Google Scholar

[46] C.C. Koch, in: Materials Science and Technology, Vol. 15, R.W. Cahn, P. Haasen, E.J. Kramer (Eds.), VCH, Weinheim (1991) 193.Suche in Google Scholar

[47] P. Bellon, R.S. Averback: Phys. Rev. Lett. 74 (1995) 1819.10.1103/PhysRevLett.74.1819Suche in Google Scholar PubMed

[48] M. Atzmon, J.D. Verhoeven, E.D. Gibson, W.L. Johnson: Appl. Phys. Lett. 45 (1984) 1052.10.1063/1.95064Suche in Google Scholar

[49] M. Atzmon, K.M. Unruh, W.L. Johnson: J. Appl. Phys. 58 (1985) 3865.10.1063/1.335604Suche in Google Scholar

[50] F. Bourdeaux, A.R. Yavari: J. Appl. Phys. 67 (1990) 2385.10.1063/1.345540Suche in Google Scholar

[51] K. Yasuna, M. Terauchi, A. Otsuki, K.N. Ishihara, P.H. Shingu: Appl. Phys. Lett. 82 (1997) 2435.10.1063/1.366052Suche in Google Scholar

[52] A. Sagel, H. Sieber, H.-J. Fecht, J.H. Perepezko: Phil. Mag. Lett. 77 (1998) 109.10.1080/095008398178688Suche in Google Scholar

[53] Y.V. Ivanisenko, G. Baumann, H.-J. Fecht, I.M. Safarov, A.V. Korznikov, R.Z. Valiev: Phys. Met. Metall. 83 (1997) 303.Suche in Google Scholar

[54] H.-J. Fecht: Nanostr. Mater. 6 (1995) 33.10.1016/0965-9773(95)00027-5Suche in Google Scholar

[55] S.K. Ganapathi, D.A. Rigney: Scripta Metall. 24 (1990) 1675.10.1016/0956-716X(90)90526-MSuche in Google Scholar

[56] F.D. Doyle, R.L. Aghan: Metall. Trans. B 6 (1975) 143.10.1007/BF02825688Suche in Google Scholar

[57] R. Porat, S. Berger, A. Rosen: Mater. Sci. Forum, 225 –227 (1996) 629.10.4028/www.scientific.net/MSF.225-227.629Suche in Google Scholar

[58] P. Humble, R.H.-J. Hannink: Nature 273 (1978) 37.10.1038/273037a0Suche in Google Scholar

[59] G. Beilby: Aggregation and Flow of Solids, Macmillan London (1921).Suche in Google Scholar

[60] P. Askenasy: Ph. D. Thesis, California Institute of Technology (1992).Suche in Google Scholar

[61] G. Bürkle: Ph. D. Thesis, University of Ulm (2003).Suche in Google Scholar

[62] W. Lojkowski, M. Djahanbakhsh, G. Bürkle, S. Gierlotka,W. Zielinski, H.-J. Fecht: J. Mater. Sci. Eng. A 303 (2001) 197.10.1016/S0921-5093(00)01947-XSuche in Google Scholar

[63] Yu. V. Milman, S.I. Chugunova, I.V. Goncharova, M. Djahanbakhsh, G. Bürkle, W. Lojkowski, H.-J. Fecht: J. Mater. Sci. Eng. A 303 (2001) 209.10.1016/S0921-5093(00)01948-1Suche in Google Scholar

[64] Yu. Ivanisenko, R.Z. Valiev, H.-J. Fecht: Scripta Mater. (2003) in print.Suche in Google Scholar

Received: 2003-06-15
Published Online: 2022-02-07

© 2003 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Articles/Aufsätze
  3. From atomistics to macro-behavior: structural superplasticity in micro- and nano-crystalline materials
  4. Interface stress in nanocrystalline materials
  5. Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi
  6. Intercrystalline defects and some properties of electrodeposited nanocrystalline nickel and its alloys
  7. Positrons as chemically sensitive probes in interfaces of multicomponent complex materials: Nanocrystalline Fe90Zr7B3
  8. Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation
  9. Nanoceramics by chemical vapour synthesis
  10. Deformation mechanism and inverse Hall – Petch behavior in nanocrystalline materials
  11. Simulations of the inert gas condensation processes
  12. Unconventional deformation mechanism in nanocrystalline metals?
  13. Alloying reactions in nanostructured multilayers during intense deformation
  14. Impact of grain boundary character on grain boundary kinetics
  15. Nanostructured (CoxFe1– x)3–yO4 spinel – mechanochemical synthesis
  16. Nanostructure formation and thermal stability of nanophase materials prepared by mechanical means
  17. Low-temperature plasma nitriding of AISI 304 stainless steel with nano-structured surface layer
  18. New materials from non-intuitive composite effects
  19. On the line defects associated with grain boundary junctions
  20. Young’s modulus in nanostructured metals
  21. The kinetics of phase formation in an ultra-thin nanoscale layer
  22. Notifications/Mitteilungen
  23. Personal/Personelles
  24. News
  25. DGM Events
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2003-0205/html?lang=de
Button zum nach oben scrollen