Home Can glycoprofiling be helpful in detecting prostate cancer?
Article
Licensed
Unlicensed Requires Authentication

Can glycoprofiling be helpful in detecting prostate cancer?

  • Stefan Belicky and Jan Tkac EMAIL logo
Published/Copyright: November 28, 2014
Become an author with De Gruyter Brill

Abstract

Glycans are chains of carbohydrates attached to proteins (glycoproteins and proteoglycans) or lipids (glycolipids). Glycosylation is a post-translational modification and glycans have a wide range of functions in the human body including involvement in oncological diseases. Change in a glycan structure can not only indicate the presence of a pathological process but, more importantly, in some cases also its stage. Thus, a glycan analysis has the potential to be an effective and reliable tool in cancer diagnostics. Lectins are proteins responsible for natural biorecognition of glycans; even carbohydrate moieties still attached to proteins or whole cells can be recognised by lectins, which makes them an ideal candidate for designing label-free biosensors for glycan analysis. This review seeks to summarise evidence that the glycoprofiling of biomarkers by lectin-based biosensors can be of significant help in detecting prostate cancer.

References

Abd Hamid, U.M., Royle, L., Saldova, R., Radcliffe, C. M., Harvey, D. J., Storr, S. J., Pardo, M., Antrobus, R., Chapman, C. J., Zitzmann, N., Robertson, J. F., Dwek, R. A., & Rudd, P. M. (2008). A strategy to reveal potential glycan markers from serum glycoproteins associated with breast cancer progression. Glycobiology, 18, 1105-1118. DOI: 10.1093/glycob/ cwn095.Search in Google Scholar

Ablin, R. J., Pfeiffer, L., Gonder, M. J., & Soanes, W. A. (1969). Precipitating antibody in the sera of patients treated cryosurgically for carcinoma of the prostate. Experimental medicine and surgery, 27, 406-410.Search in Google Scholar

Albertsen, P. C., Hanley, J. A., Gleason, D. F., & Barry, M. J. (1998). Competing risk analysis of men aged 55 to 74 years at diagnosis managed conservatively for clinically localized prostate cancer. Jama, 280, 975-980. DOI: 10.1001/jama.280.11.975.10.1001/jama.280.11.975Search in Google Scholar PubMed

Alley, W. R., Mann, B. F., & Novotny, M. V. (2013). Highsensitivity analytical approaches for the structural characterization of glycoproteins. Chemical Reviews, 113, 2668-2732. DOI: 10.1021/cr3003714.10.1021/cr3003714Search in Google Scholar PubMed PubMed Central

An, H. J., Froehlich, J. W., & Lebrilla, C. B. (2009). Determination of glycosylation sites and site-specific heterogeneity in glycoproteins. Current Opinion in Chemical Biology, 13, 421-426. DOI: 10.1016/j.cbpa.2009.07.022.10.1016/j.cbpa.2009.07.022Search in Google Scholar PubMed PubMed Central

Andersen, C. B. F., Torvund-Jensen, M., Nielsen, M. J., de Oliveira, C. L. P., Hersleth, H. P., Andersen, N. H., Pedersen, J. S., Andersen, G. R., & Moestrup, S. K. (2012). Structure of the haptoglobin-haemoglobin complex. Nature, 489, 456-459. DOI: 10.1038/nature11369.10.1038/nature11369Search in Google Scholar PubMed

André, S., Wang, G. N., Gabius, H. J., & Murphy, P. V. (2014). Combining glycocluster synthesis with protein engineering: An approach to probe into the significance of linker length in a tandem-repeat-type lectin (galectin-4). Carbohydrate Research, 389, 25-38. DOI: 10.1016/j.carres.2013.12.024.10.1016/j.carres.2013.12.024Search in Google Scholar PubMed

Anthony, R. M., Nimmerjahn, F., Ashline, D. J., Reinhold, V. N., Paulson, J. C., & Ravetch, J. V. (2008). Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science, 320, 373-376. DOI: 10.1126/science.1154315.10.1126/science.1154315Search in Google Scholar PubMed PubMed Central

Arnaud, J., Audfray, A., & Imberty, A. (2013). Binding sugars: From natural lectins to synthetic receptors and engineered neolectins. Chemical Society Reviews, 42, 4798-4813. DOI: 10.1039/c2cs35435g.10.1039/c2cs35435gSearch in Google Scholar PubMed

Arnold, J. N., Saldova, R., Galligan, M. C., Murphy, T. B., Mimura-Kimura, Y., Telford, J. E., Godwin, A. K., & Rudd, P. M. (2011). Novel glycan biomarkers for the detection of lung cancer. Journal of Proteome Research, 10, 1755-1764. DOI: 10.1021/pr101034t.10.1021/pr101034tSearch in Google Scholar PubMed

Arthur, C. M., Cummings, R. D., & Stowell, S. R. (2014). Using glycan microarrays to understand immunity. Current Opinion in Chemical Biology, 18, 55-61. DOI: 10.1016/j.cbpa. 2013.12.017.Search in Google Scholar

Ates, M. (2011). Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces. Progress in Organic Coatings, 71, 1-10. DOI: 10.1016/j.porgcoat.2010.12.011.10.1016/j.porgcoat.2010.12.011Search in Google Scholar

Badr, H. A., AlSadek, D. M. M., Darwish, A. A., ElSayed, A. I., Bekmanov, B. O., Khussainova, E. M., Zhang, X. J., Cho, W. C. S., Djansugurova, L. B., & Li, C. Z. (2014). Lectin approaches for glycoproteomics in FDA-approved cancer biomarkers. Expert Review of Proteomics, 11, 227-236. DOI: 10.1586/14789450.2014.897611.10.1586/14789450.2014.897611Search in Google Scholar PubMed

Baker, J. L., C, elik, E., & DeLisa, M. P. (2013). Expanding the glycoengineering toolbox: The rise of bacterial N-linked protein glycosylation. Trends in Biotechnology, 31, 313-323. DOI: 10.1016/j.tibtech.2013.03.003.10.1016/j.tibtech.2013.03.003Search in Google Scholar

Balk, S. P., Ko, Y. J., & Bubley, G. J. (2003). Biology of prostate-specific antigen. Journal of Clinical Oncology, 21, 383-391. DOI: 10.1200/jco.2003.02.083.10.1200/JCO.2003.02.083Search in Google Scholar

Barfidokht, A., & Gooding, J. J. (2014). Approaches toward allowing electroanalytical devices to be used in biological fluids. Electroanalysis, 26, 1182-1196. DOI: 10.1002/elan.201400 097.Search in Google Scholar

Barkalina, N., Charalambous, C., Jones, C., & Coward, K. (2014). Nanotechnology in reproductive medicine: Emerging applications of nanomaterials. Nanomedicine: Nanotechnology, Biology and Medicine, 10, 921-938. DOI: 10.1016/j.nano.2014.01.001.10.1016/j.nano.2014.01.001Search in Google Scholar

Berry, S. J., Coffey, D. S., Walsh, P. C., & Ewing, L. L. (1984). The development of human benign prostatic hyperplasia with age. The Journal of Urology, 132, 474-479.10.1016/S0022-5347(17)49698-4Search in Google Scholar

Bertók, T., Katrlik, J., Gemeiner, P., & Tkac, J. (2013a). Electrochemical lectin based biosensors as a label-free tool in glycomics. Microchimica Acta, 180, 1-13. DOI: 10.1007/s00604-012-0876-4.10.1007/s00604-012-0876-4Search in Google Scholar

Bertók, T., Klukova, L., Sediva, A., Kasak, P., Semak, V., Micusik, M., Omastova, M., Chovanova, L., Vlček, M., Imrich, R., Vikartovska, A., & Tkac, J. (2013b). Ultrasensitive impedimetric lectin biosensors with efficient antifouling properties applied in glycoprofiling of human serum samples. Analytical Chemistry, 85, 7324-7332. DOI: 10.1021/ac401281t.10.1021/ac401281tSearch in Google Scholar

Bertók, T., Sediva, A., Katrlik, J., Gemeiner, P., Mikula, M., Nosko, M., & Tkac, J. (2013c). Label-free detection of glycoproteins by the lectin biosensor down to attomolar level using gold nanoparticles. Talanta, 108, 11-18. DOI: 10.1016/j.talanta.2013.02.052.10.1016/j.talanta.2013.02.052Search in Google Scholar

Bertók, T., Sediva, A., Vikartovska, A., & Tkac, J. (2014). Comparison of the 2d and 3d nanostructured lectin-based biosensors for in situ detection of sialic acid on glycoproteins. International Journal of Electrochemical Science, 9, 890-900.Search in Google Scholar

Bo, M., Ventura, M., Marinello, R., Capello, S., Casetta, G., & Fabris, F. (2003). Relationship between prostatic specific antigen (PSA) and volume of the prostate in the benign prostatic hyperplasia in the elderly. Critical Reviews in Oncology/Hematology, 47, 207-211. DOI: 10.1016/s1040-8428(03)00094-5.10.1016/S1040-8428(03)00094-5Search in Google Scholar

Boron, W. F., & Boulpaep, E. L. (2009). Medical physiology: A cellular and molecular approach. Philadelphia, PA, USA: Saunders/Elsevier.Search in Google Scholar

Borrebaeck, C. A. K., & Wingren, C. (2011). Recombinant antibodies for the generation of antibody arrays. Methods in Molecular Biology, 785, 247-262. DOI: 10.1007/978-1-61779-286-1 17.10.1007/978-1-61779-286-1Search in Google Scholar

Bostwick, D. G., Pacelli, A., Blute, M., Roche, P., & Murphy, G. P. (1998). Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: A study of 184 cases. Cancer, 82, 2256-2261. DOI: 10.1002/(sici)1097-0142(19980601)82:11<2256::aid-cncr22> 3.0.co;2-s.Search in Google Scholar

Briand, E., Salmain, M., Comp`ere, C., & Pradier, C. M. (2006). Immobilization of protein A on SAMs for the elaboration of immunosensors. Colloids and Surfaces B: Biointerfaces, 53, 215-224. DOI: 10.1016/j.colsurfb.2006.09.010.10.1016/j.colsurfb.2006.09.010Search in Google Scholar PubMed

Bučko, M., Mislovičova, D., Nahalka, J., Vikartovska, A., Šefčovičova, J., Katrlik, J., Tkac, J., Gemeiner, P., Lacik, I., Štefuca, V., Polakovič, M., Rosenberg, M., Rebroš, M., Šmogrovičova, D., & Švitel, J. (2012). Immobilization in biotechnology and biorecognition: From macro- to nanoscale systems. Chemical Papers, 66, 983-998. DOI: 10.2478/s11696-012-0226-3.10.2478/s11696-012-0226-3Search in Google Scholar

Burton, D. R., Poignard, P., Stanfield, R. L., & Wilson, I. A. (2012). Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science, 337, 183-186. DOI: 10.1126/science.1225416.10.1126/science.1225416Search in Google Scholar PubMed PubMed Central

Byrne, H., Conroy, P. J., Whisstock, J. C., & O’Kennedy, R. J. (2013). A tale of two specificities: Bispecific antibodies for therapeutic and diagnostic applications. Trends in Biotechnology, 31, 621-632. DOI: 10.1016/j.tibtech.2013.08.007.10.1016/j.tibtech.2013.08.007Search in Google Scholar PubMed PubMed Central

Cancino, J., & Machado, S. A. S. (2012). Microelectrode array in mixed alkanethiol self-assembled monolayers: Electrochemical studies. Electrochimica Acta, 72, 108-113. DOI: 10.1016/j.electacta.2012.04.009.10.1016/j.electacta.2012.04.009Search in Google Scholar

Catalona, W. J., Smith, D. S., Ratliff, T. L., Dodds, K. M., Coplen, D. E., Yuan, J. J. J., Petros, J. A., & Andriole, G. L. (1991). Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. New England Journal of Medicine, 324, 1156-1161. DOI: 10.1056/nejm199104253241702.10.1056/NEJM199104253241702Search in Google Scholar PubMed

Chen, J. R., Miao, Y. Q., He, N. Y., Wu, X. H., & Li, S. J. (2004). Nanotechnology and biosensors. Biotechnology Advances, 22, 505-518. DOI: 10.1016/j.biotechadv.2004.03.004.10.1016/j.biotechadv.2004.03.004Search in Google Scholar PubMed

Chen, S. H., Yuan, R., Chai, Y. Q., Min, L. G., Li, W. J., & Xu, Y. (2009). Electrochemical sensing platform based on tris(2,2_ -bipyridyl)cobalt(III) and multiwall carbon nanotubes-Nafion composite for immunoassay of carcinoma antigen-125. Electrochimica Acta, 54, 7242-7247. DOI: 10.1016/j.electacta.2009.07.035.10.1016/j.electacta.2009.07.035Search in Google Scholar

Chornokur, G., Arya, S. K., Phelan, C., Tanner, R., & Bhansali, S. (2011). Impedance-based miniaturized biosensor for ultrasensitive and fast prostate-specific antigen detection. Journal of Sensors, 2011, 1-7. DOI: 10.1155/2011/983752.10.1155/2011/983752Search in Google Scholar

Cummings, R. D., & Pierce, J. M. (2014). The challenge and promise of glycomics. Chemistry & Biology, 21, 1-15. DOI: 10.1016/j.chembiol.2013.12.010.10.1016/j.chembiol.2013.12.010Search in Google Scholar PubMed PubMed Central

Dalziel, M., Crispin, M., Scanlan, C. N., Zitzmann, N., & Dwek, R. A. (2014). Emerging principles for the therapeutic exploitation of glycosylation. Science, 343, 1235681. DOI: 10.1126/science.1235681.10.1126/science.1235681Search in Google Scholar PubMed

Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties and applications toward biology, catalysis and nanotechnology. Chemical Reviews, 104, 293-346. DOI: 10.1021/cr030698+.10.1021/cr030698+Search in Google Scholar PubMed

Daubenmier, J. J., Weidner, G., Marlin, R., Crutchfield, L., Dunn-Emke, S., Chi, C., Gao, B., Carroll, P., & Ornish, D. (2006). Lifestyle and health-related quality of life of men with prostate cancer managed with active surveillance. Urology, 67, 125-130. DOI: 10.1016/j.urology.2005.07.056.10.1016/j.urology.2005.07.056Search in Google Scholar PubMed

Davis, J. J., Tkac, J., Laurenson, S., & Ferrigno, P. K. (2007). Peptide aptamers in label-free protein detection: 1. Characterization of the immobilized scaffold. Analytical Chemistry, 79, 1089-1096. DOI: 10.1021/ac061863z.10.1021/ac061863zSearch in Google Scholar PubMed

Davis, J. J., Tkac, J., Humphreys, R., Buxton, A. T., Lee, T. A., & Ferrigno, P. K. (2009). Peptide aptamers in label-free protein detection: 2. Chemical optimization and detection of distinct protein isoforms. Analytical Chemistry, 81, 3314-3320. DOI: 10.1021/ac802513n.10.1021/ac802513nSearch in Google Scholar PubMed

Dey, A., Kaushik, A., Arya, S. K., & Bhansali, S. (2012). Mediator free highly sensitive polyaniline-gold hybrid nanocomposite based immunosensor for prostate-specific antigen (PSA) detection. Journal of Materials Chemistry, 22, 14763-14772. DOI: 10.1039/c2jm31663c.10.1039/c2jm31663cSearch in Google Scholar

Edwards, B.K., Brown, M. L.,Wingo, P.A.,Howe,H. L., Ward, E., Ries, L. A. G., Schrag, D., Jamison, P. M., Jemal, A., Wu, X. C., Friedman, C., Harlan, L., Warren, J., Anderson, R. N., & Pickle, L. W. (2005). Annual report to the nation on the status of cancer, 1975-2002, featuring population-based trends in cancer treatment. JNCI Journal of the National Cancer Institute, 97, 1407-1427. DOI: 10.1093/jnci/dji289.10.1093/jnci/dji289Search in Google Scholar PubMed

Epstein, J. I., Allsbrook, W. C., Jr., Amin, M. B., & Egevad, L. L. (2005). The 2005 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma. The American Journal of Surgical Pathology, 29, 1228-1242.10.1097/01.pas.0000173646.99337.b1Search in Google Scholar PubMed

Estrela, P., Stewart, A. G., Yan, F., & Migliorato, P. (2005). Field effect detection of biomolecular interactions. Electrochimica Acta, 50, 4995-5000. DOI: 10.1016/j.electacta. 2005.02.075.Search in Google Scholar

Estrela, P., Paul, D., Li, P., Keighley, S. D., Migliorato, P., Laurenson, S., & Ferrigno, P. K. (2008). Label-free detection of protein interactions with peptide aptamers by open circuit potential measurement. Electrochimica Acta, 53, 6489-6496. DOI: 10.1016/j.electacta.2008.04.036.10.1016/j.electacta.2008.04.036Search in Google Scholar

Estrela, P., Paul, D., Song, Q., Stadler, L. K. J., Wang, L., Huq, E., Davis, J. J., Ferrigno, P. K., & Migliorato, P. (2010). Label-free sub-picomolar protein detection with fieldeffect transistors. Analytical Chemistry, 82, 3531-3536. DOI: 10.1021/ac902554v.10.1021/ac902554vSearch in Google Scholar PubMed

Faiz, O., & Moffat, D. (2002). Anatomy at a glance (pp. 176). Oxford, UK: Blackwell.Search in Google Scholar

Ferlay, J., & Soerjomataram, I. (2013). Globocan 2012 V1.0, cancer incidence and mortality worldwide: iarc cancerbase no. 11. Retrieved April 28, 2014, from http://globocan.iarc.frSearch in Google Scholar

Ferlay, J., Steliarova-Foucher, E., Lortet-Tieulent, J., Rosso, S., Coebergh, J. W. W., Comber, H., Forman, D., & Bray, F. (2013). Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. European Journal of Cancer, 49, 1374-1403. DOI: 10.1016/j.ejca.2012.12.027.10.1016/j.ejca.2012.12.027Search in Google Scholar PubMed

Fletcher, R. H., Fletcher, S. W., & Fletcher, G. S. (2012). Clinical epidemiology: The essentials. Philadelphia, PA, USA: Lippincott Williams & Wilkins.Search in Google Scholar

Freeze, H. H., & Ng, B. G. (2012). Glycomics, glycobiology and glyco-medicine. In G. S. Ginsburg, & H. F. Willard (Eds.), Genomic and personalized medicine (pp. 173). Amsterdam, The Netherlands: Elsevier.Search in Google Scholar

Fujita, K., Shimomura, M., Uemura, M., Nakata, W., Sato, M., Nagahara, A., Nakai, Y., Takamatsu, S., Miyoshi, E., & Nonomura, N. (2014). Serum fucosylated haptoglobin as a novel prognostic biomarker predicting high-Gleason prostate cancer. The Prostate, 74, 1052-1058. DOI: 10.1002/pros. 22824.Search in Google Scholar

Gabius, H. J., Andre, S., Kaltner, H., & Siebert, H. C. (2002). The sugar code: Functional lectinomics. Biochimica et Biophysica Acta (BBA) - General Subjects, 1572, 165-177. DOI: 10.1016/s0304-4165(02)00306-9.10.1016/S0304-4165(02)00306-9Search in Google Scholar

Geissner, A., Anish, C., & Seeberger, P. H. (2014). Glycan arrays as tools for infectious disease research. Current Opinion in Chemical Biology, 18, 38-45. DOI: 10.1016/j.cbpa.2013. 11.013.Search in Google Scholar

Gemeiner, P., Mislovičova, D., Tkač, J., Švitel, J., Patoprsty, V., Hrabarova, E., Kogan, G., & Kožar, T. (2009). Lectinomics: II. A highway to biomedical/clinical diagnostics. Biotechnology Advances, 27, 1-15. DOI: 10.1016/j.biotechadv.2008.07. 003.Search in Google Scholar

Gilgunn, S., Conroy, P. J., Saldova, R., Rudd, P. M., & O’Kennedy, R. J. (2013). Aberrant PSA glycosylation - a sweet predictor of prostate cancer. Nature Reviews Urology, 10, 99-107. DOI: 10.1038/nrurol.2012.258.10.1038/nrurol.2012.258Search in Google Scholar PubMed

Gooding, J. J., Mearns, F., Yang, W., & Liu, J. Q. (2003). Self-assembled monolayers into the 21st century: Recent advances and applications. Electroanalysis, 15, 81-96. DOI: 10.1002/elan.200390017.10.1002/elan.200390017Search in Google Scholar

Gopinath, S. C. B., Tang, T. H., Citartan, M., Chen, Y., & Lakshmipriya, T. (2014). Current aspects in immunosensors. Biosensors and Bioelectronics, 57, 292-302. DOI: 10.1016/j.bios.2014.02.029.10.1016/j.bios.2014.02.029Search in Google Scholar PubMed

Gray, C. J., Weissenborn, M. J., Eyers, C. E., & Flitsch, S. L. (2013). Enzymatic reactions on immobilised substrates. Chemical Society Reviews, 42, 6378-6405. DOI: 10.1039/c3cs60018a.10.1039/c3cs60018aSearch in Google Scholar PubMed

Grossmann, M., Cheung, A. S., & Zajac, J. D. (2013). Androgens and prostate cancer; pathogenesis and deprivation therapy. Best Practice & Research Clinical Endocrinology & Metabolism, 27, 603-616. DOI: 10.1016/j.beem.2013.05.001.10.1016/j.beem.2013.05.001Search in Google Scholar PubMed

Gu, Z., Thomas, G., Yamashiro, J., Shintaku, I. P., Dorey, F., Raitano, A., Witte, O. N., Said, J. W., Loda, M., & Reiter, R. E. (2000). Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene, 19, 1288-1296. DOI: 10.1038/sj.onc.1203426.10.1038/sj.onc.1203426Search in Google Scholar PubMed

Gunia, S., Koch, S., May, M., Dietel, M., & Erbersdobler, A. (2009). Expression of prostatic acid phosphatase (PSAP) in transurethral resection specimens of the prostate is predictive of histopathologic tumor stage in subsequent radical prostatectomies. Virchows Archiv, 454, 573-579. DOI: 10.1007/s00428-009-0759-1.10.1007/s00428-009-0759-1Search in Google Scholar PubMed

Guo, Q.M., & Li, F. S. (2014). Self-assembled alkanethiol monolayers on gold surfaces: Resolving the complex structure at the interface by STM. Physical Chemistry Chemical Physics, 16, 19074-19090. DOI: 10.1039/c4cp00596a.10.1039/C4CP00596ASearch in Google Scholar

Gupta-Elera, G., Garrett, A. R., Robison, R. A., & O’Neill, K. L. (2012). The role of oxidative stress in prostate cancer. European Journal of Cancer Prevention, 21, 155-162. DOI: 10.1097/cej.0b013e32834a8002.10.1097/CEJ.0b013e32834a8002Search in Google Scholar PubMed

Gutman, A. B., & Gutman, E. B. (1938). An “acid” phosphatase occurring in the serum of patients with metastasizing carcinoma of the prostate gland. Journal of Clinical Investigation, 17, 473-478. DOI: 10.1172/jci100974.10.1172/JCI100974Search in Google Scholar PubMed PubMed Central

Haltiwanger, R. S., & Lowe, J. B. (2004). Role of glycosylation in development. Annual Review of Biochemistry, 73, 491-537. DOI: 10.1146/annurev.biochem.73.011303.074043.10.1146/annurev.biochem.73.011303.074043Search in Google Scholar PubMed

Hart, G. W., & Copeland, R. J. (2010). Glycomics hits the big time. Cell, 143, 672-676. DOI: 10.1016/j.cell.2010.11.008.10.1016/j.cell.2010.11.008Search in Google Scholar PubMed PubMed Central

Healy, D. A., Hayes, C. J., Leonard, P., McKenna, L., & O’Kennedy, R. (2007). Biosensor developments: Application to prostate-specific antigen detection. Trends in Biotechnology, 25, 125-131. DOI: 10.1016/j.tibtech.2007.01.004.10.1016/j.tibtech.2007.01.004Search in Google Scholar PubMed

Hermanson, G. T. (2013). Bioconjugate techniques. Rockford, IL, USA: Academic Press.Search in Google Scholar

Hideshima, S., Kuroiwa, S., Kimura, M., Cheng, S., & Osaka, T. (2013). Effect of the size of receptor in allergy detection using field effect transistor biosensor. Electrochimica Acta, 110, 146-151. DOI: 10.1016/j.electacta.2013.07.113.10.1016/j.electacta.2013.07.113Search in Google Scholar

Hirabayashi, J., Yamada, M., Kuno, A., & Tateno, H. (2013). Lectin microarrays: Concept, principle and applications. Chemical Society Reviews, 42, 4443-4458. DOI: 10.1039/ c3cs35419a.10.1039/c3cs35419aSearch in Google Scholar PubMed

Holliger, P., & Hudson, P. J. (2005). Engineered antibody fragments and the rise of single domains. Nature Biotechnology, 23, 1126-1136. DOI: 10.1038/nbt1142.10.1038/nbt1142Search in Google Scholar PubMed

Holmes, E. H., Greene, T. G., Tino, W. T., Boynton, A. L., Aldape, H. C., Misrock, S. L., & Murphy, G. P. (1996). Analysis of glycosylation of prostate-specific membrane antigen derived from lncap cells, prostatic carcinoma tumors, and serum from prostate cancer patients. The Prostate, 29(Supplement 7), 25-29. DOI: 10.1002/(sici)1097-0045(1996)7+<25::aid-pros3>3.0.co;2-i.Search in Google Scholar

Huang, Y. W., Wu, C. S., Chuang, C. K., Pang, S. T., Pan, T. M., Yang, Y. S., & Ko, F. H. (2013). Real-time and label-free detection of the prostate-specific antigen in human serum by a polycrystalline silicon nanowire field-effect transistor biosensor. Analytical Chemistry, 85, 7912-7918. DOI: 10.1021/ac401610s.10.1021/ac401610sSearch in Google Scholar PubMed

Hushegyi, A., & Tkac, J. (2014). Are glycan biosensors an alternative to glycan microarrays? Analytical Methods, 6, 6610-6620. DOI: 10.1039/c4ay00692e.10.1039/C4AY00692ESearch in Google Scholar PubMed PubMed Central

Jimenez-Andrade, J. M., Mantyh, W. G., Bloom, A. P., Ferng, A. S., Geffre, C. P., & Mantyh, P. W. (2010). Bone cancer pain. Annals of the New York Academy of Sciences, 1198, 173-181. DOI: 10.1111/j.1749-6632.2009.05429.x.10.1111/j.1749-6632.2009.05429.xSearch in Google Scholar PubMed PubMed Central

Katrlik, J., Švitel, J., Gemeiner, P., Kožar, T., & Tkac, J. (2010). Glycan and lectin microarrays for glycomics and medicinal applications. Medicinal Research Reviews, 30, 394-418. DOI: 10.1002/med.20195.10.1002/med.20195Search in Google Scholar PubMed

Katz, E., & Willner, I. (2003). Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immuno sensors, DNA-sensors and enzyme biosensors. Electroanalysis, 15, 913-947. DOI: 10.1002/elan.200390114.10.1002/elan.200390114Search in Google Scholar

Kavosi, B., Salimi, A., Hallaj, R., & Amani, K. (2014). A highly sensitive prostate-specific antigen immunosensor based on gold nanoparticles/PAMAM dendrimer loaded on MWCNTS/ chitosan/ionic liquid nanocomposite. Biosensors and Bioelectronics, 52, 20-28. DOI: 10.1016/j.bios.2013.08.012.10.1016/j.bios.2013.08.012Search in Google Scholar PubMed

Kim, E. H., & Misek, D. E. (2011). Glycoproteomics-based identification of cancer biomarkers. International Journal of Proteomics, 2011, 1-10. DOI: 10.1155/2011/601937.10.1155/2011/601937Search in Google Scholar PubMed PubMed Central

Kim, J. H., Resende, R., Wennekes, T., Chen, H. M., Bance, N., Buchini, S., Watts, A. G., Pilling, P., Streltsov, V. A., Petric, M., Liggins, R., Barrett, S., McKimm-Breschkin, J. L., Niikura, M., & Withers, S. G. (2013). Mechanism-based covalent neuraminidase inhibitors with broad-spectrum influenza antiviral activity. Science, 340, 71-75. DOI: 10.1126/science. 1232552.10.1126/scienceSearch in Google Scholar

Kluková, Ľ., Bertok, T., Kasak, P., & Tkac, J. (2014). Nanoscale-controlled architecture for the development of ultrasensitive lectin biosensors applicable in glycomics. Analytical Methods, 6, 4922-4931 DOI: 10.1039/c4ay00495g.10.1039/c4ay00495gSearch in Google Scholar

Knedlik, T., Navratil, V., Vik, V., Pacik, D., Šacha, P., & Konvalinka, J. (2014). Detection and quantitation of glutamate carboxypeptidase II in human blood. The Prostate, 74, 768-780. DOI: 10.1002/pros.22796.10.1002/pros.22796Search in Google Scholar PubMed

Kong, H. Y., & Byun, J. (2013). Emerging roles of human prostatic acid phosphatase. Biomolecules and Therapeutics, 21, 10-20. DOI: 10.4062/biomolther.2012.095.10.4062/biomolther.2012.095Search in Google Scholar PubMed PubMed Central

Kral, M., Rosinska, V., Student, V., Grepl, M., Hrabec, M., & Bouchal, J. (2011). Genetic determinants of prostate cancer: A review. Biomedical Papers, 155, 3-10. DOI: 10.5507/bp.155.2011.001.10.5507/bp.155.2011.001Search in Google Scholar PubMed

Langmuir, I. (1917). The constitution and fundamental properties of solids and liquids II. Liquids. Journal of the American Chemical Society, 39, 1848-1906. DOI: 10.1021/ja02254a006.10.1021/ja02254a006Search in Google Scholar

Laurent, N., Haddoub, R., & Flitsch, S. L. (2008). Enzyme catalysis on solid surfaces. Trends in Biotechnology, 26, 328-337. DOI: 10.1016/j.tibtech.2008.03.003.10.1016/j.tibtech.2008.03.003Search in Google Scholar PubMed

Leissner, K. H., & Tisell, L. E. (1979). The weight of the human prostate. Scandinavian Journal of Urology and Nephrology, 13, 137-142. DOI: 10.3109/00365597909181168.10.3109/00365597909181168Search in Google Scholar PubMed

Lepenies, B., & Seeberger, P. H. (2014). Simply better glycoproteins. Nature Biotechnology, 32, 443-445. DOI: 10.1038/nbt.2893.10.1038/nbt.2893Search in Google Scholar PubMed

Lepor, H. (2004). Pathophysiology, epidemiology and natural history of benign prostatic hyperplasia. Reviews in Urology, 6, S3-S10.Search in Google Scholar

Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., &Whitesides, G. M. (2005). Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews, 105, 1103-1170. DOI: 10.1021/cr0300789.10.1021/cr0300789Search in Google Scholar PubMed

Luo, X. L., Morrin, A., Killard, A. J., & Smyth, M. R. (2006). Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis, 18, 319-326. DOI: 10.1002/elan.200503415.10.1002/elan.200503415Search in Google Scholar

Luo, X. L., & Davis, J. J. (2013). Electrical biosensors and the label free detection of protein disease biomarkers. Chemical Society Reviews, 42, 5944-5962. DOI: 10.1039/c3cs60077g.10.1039/c3cs60077gSearch in Google Scholar PubMed

Lvovich, V. F. (2012). Impedance spectroscopy: Applications to electrochemical and dielectric phenomena. Hoboken, NJ, USA: Wiley. DOI: 10.1002/9781118164075.ch13.10.1002/9781118164075.ch13Search in Google Scholar

MacDonald, J. R., & Johnson, W. B. (2005). Fundamentals of impedance spectroscopy. In E. Barsoukov, & J. R. MacDonald (Eds.), Impedance spectroscopy: Theory, experiment and applications (pp. 8). Hoboken, NJ, USA: Wiley.Search in Google Scholar

Madu, C. O., & Lu, Y. (2010). Novel diagnostic biomarkers for prostate cancer. Journal of Cancer, 1, 150-177.10.7150/jca.1.150Search in Google Scholar PubMed PubMed Central

Mandler, D., & Kraus-Ophir, S. (2011). Self-assembled monolayers (SAMs) for electrochemical sensing. Journal of Solid State Electrochemistry, 15, 1535-1558. DOI: 10.1007/s10008-011-1493-6.10.1007/s10008-011-1493-6Search in Google Scholar

Mariño, K., Bones, J., Kattla, J. J., & Rudd, P. M. (2010). A systematic approach to protein glycosylation analysis: A path through the maze. Nature Chemical Biology, 6, 713-723. DOI: 10.1038/nchembio.437.10.1038/nchembio.437Search in Google Scholar PubMed

Martin, D. N., Starks, A. M., & Ambs, S. (2013). Biological determinants of health disparities in prostate cancer. Current Opinion in Oncology, 25, 235-241. DOI: 10.1097/cco.0b013e32835eb5d1.10.1097/CCO.0b013e32835eb5d1Search in Google Scholar

Matsumoto, A., & Miyahara, Y. (2013). Current and emerging challenges of field effect transistor based bio-sensing. Nanoscale, 5, 10702-10718. DOI: 10.1039/c3nr02703a.10.1039/c3nr02703aSearch in Google Scholar

Mechref, Y., Hu, Y. L., Garcia, A., & Hussein, A. (2012). Identifying cancer biomarkers by mass spectrometry-based glycomics. Electrophoresis, 33, 1755-1767. DOI: 10.1002/elps. 201100715.Search in Google Scholar

Mellinger, G. T., Gleason, D., & Bailar, J., 3rd. (1967). The histology and prognosis of prostatic cancer. The Journal of Urology, 97, 331-337.10.1016/S0022-5347(17)63039-8Search in Google Scholar

Meyburg, S., Stockmann, R., Moers, J., Offenhausser, A., & Ingebrandt, S. (2007). Advanced CMOS process for floating gate field-effect transistors in bioelectronic applications. Sensors and Actuators B: Chemical, 128, 208-217. DOI: 10.1016/j.snb.2007.06.003.10.1016/j.snb.2007.06.003Search in Google Scholar

Mikolajczyk, S. D., Grauer, L. S., Millar, L. S., Hill, T. M., Kumar, A., Rittenhouse, H. G., Wolfert, R. L., & Saedi, M. S. (1997). A precursor form of PSA (pPSA) is a component of the free PSA in prostate cancer serum. Urology, 50, 710-714. DOI: 10.1016/s0090-4295(97)00449-4.10.1016/S0090-4295(97)00449-4Search in Google Scholar

Miller, D. C., Hafez, K. S., Stewart, A., Montie, J. E., & Wei, J. T. (2003). Prostate carcinoma presentation, diagnosis and staging. Cancer, 98, 1169-1178. DOI: 10.1002/cncr.11635.10.1002/cncr.11635Search in Google Scholar PubMed

Miller, J., & Tarter, T. H. (2009). Combination therapy with dutasteride and tamsulosin for the treatment of symptomatic enlarged prostate. Clinical Interventions in Aging, 2009, 251-258. DOI: 10.2147/cia.s4102.10.2147/CIA.S4102Search in Google Scholar PubMed PubMed Central

Mislovičová, D., Gemeiner, P., Kozarova, A., & Kožar, T. (2009). Lectinomics I. Relevance of exogenous plant lectins in biomedical diagnostics. Biologia, 64, 1-19. DOI: 10.2478/ s11756-009-0029-3.10.2478/s11756-009-0029-3Search in Google Scholar

Moon, J. M., Kim, Y. H., & Cho, Y. N. (2014). A nanowirebased label-free immunosensor: Direct incorporation of a PSA antibody in electropolymerized polypyrrole. Biosensors and Bioelectronics, 57, 157-161. DOI: 10.1016/j.bios.2014. 02.016.Search in Google Scholar

Mu, B., Zhang, J. Q., McNicholas, T. P., Reuel, N. F., Kruss, S., & Strano, M. S. (2014). Recent advances in molecular recognition based on nanoengineered platforms. Accounts of Chemical Research, 47, 979-988. DOI: 10.1021/ar400162w.10.1021/ar400162wSearch in Google Scholar PubMed

Muniyan, S., Chaturvedi, N. K., Dwyer, J. G., LaGrange, C. A., Chaney, W. G., & Lin, M. F. (2013). Human prostatic acid phosphatase: Structure, function and regulation. International Journal of Molecular Sciences, 14, 10438-10464. DOI: 10.3390/ijms140510438.10.3390/ijms140510438Search in Google Scholar PubMed PubMed Central

Muniyan, S., Ingersoll, M. A., Batra, S. K., & Lin, M. F. (2014). Cellular prostatic acid phosphatase, a PTENfunctional homologue in prostate epithelia, functions as a prostate-specific tumor suppressor. Biochimica et Biophysica Acta (BBA) - General Subjects, 1846, 88-98. DOI: 10.1016/j.bbcan.2014.04.006.10.1016/j.bbcan.2014.04.006Search in Google Scholar

Murphy, K. P., Travers, P., Walport, M., & Janeway, C. (2008). Janeway’s immunobiology. New York, NY, USA: Garland Science.Search in Google Scholar

Nagatsuka, T., Uzawa, H., Sato, K., Kondo, S., Izumi, M., Yokoyama, K., Ohsawa, I., Seto, Y., Neri, P., Mori, H., Nishida, Y., Saito, M., & Tamiya, E. (2013). Localized surface plasmon resonance detection of biological toxins using cell surface oligosaccharides on glyco chips. ACS Applied Materials & Interfaces, 5, 4173-4180. DOI: 10.1021/am4002937.10.1021/am4002937Search in Google Scholar

Nakayama, Y., Nakamura, N., Tsuji, D., Itoh, K., & Kurosaka, A. (2013). Genetic diseases associated with protein glycosylation disorders in mammals. In M. Puiu (Ed.), Genetic disorders. Rijeka, Croatia: InTech. DOI: 10.5772/54097.10.5772/54097Search in Google Scholar

National Cancer Institute (2014). NCI Dictionary of cancer terms. Retrieved on June 2014, from http://www.cancer.gov/ Search in Google Scholar

Novotny, M. V., & Alley, W. R., Jr. (2013). Recent trends in analytical and structural glycobiology. Current Opinion in Chemical Biology, 17, 832-840. DOI: 10.1016/j.cbpa.2013.05. 029.Search in Google Scholar

Ostrowski, W. S., & Kuciel, R. (1994). Human prostatic acid phosphatase: Selected properties and practical applications. Clinica Chimica Acta, 226, 121-129. DOI: 10.1016/0009-8981(94)90209-7.10.1016/0009-8981(94)90209-7Search in Google Scholar

Owen, D. H., & Katz, D. F. (2005). A review of the physical and chemical properties of human semen and the formulation of a semen simulant. Journal of Andrology, 26, 459-469. DOI: 10.2164/jandrol.04104.10.2164/jandrol.04104Search in Google Scholar PubMed

Paleček, E., Tkac, J., Bartošik, M., Bertok, T., Ostatna, V., & Paleček, J. (2014). Electrochemistry of non-conjugated proteins and glycoproteins. towards sensors for biomedicine and glycomics. Chemical Reviews, Submitted.Search in Google Scholar

Pepe, M. S., Etzioni, R., Feng, Z. D., Potter, J. D., Thompson, M. L., Thornquist, M., Winget, M., & Yasui, Y. (2001). Phases of biomarker development for early detection of cancer. Journal of the National Cancer Institute, 93, 1054-1061.10.1093/jnci/93.14.1054Search in Google Scholar PubMed

Peracaula, R., Tabares, G., Royle, L., Harvey, D. J., Dwek, R. A., Rudd, P. M., & de Llorens, R. (2003). Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology, 13, 457-470. DOI: 10.1093/glycob/cwg041.10.1093/glycob/cwg041Search in Google Scholar PubMed

Peracaula, R., Barrabes, S., Sarrats, A., Rudd, P. M., & de Llorens, R. (2008). Altered glycosylation in tumours focused to cancer diagnosis. Disease Markers, 25, 207-218. DOI: 10.1155/2008/797629.10.1155/2008/797629Search in Google Scholar PubMed PubMed Central

Perumal, V., & Hashim, U. (2014). Advances in biosensors: Principle, architecture and applications. Journal of Applied Biomedicine, 12, 1-15. DOI: 10.1016/j.jab.2013.02.001.10.1016/j.jab.2013.02.001Search in Google Scholar

Poon, C. Y., Chan, H. M., & Li, H. W. (2014). Direct detection of prostate specific antigen by darkfield microscopy using single immunotargeting silver nanoparticle. Sensors and Actuators B: Chemical, 190, 737-744. DOI: 10.1016/j.snb.2013.09.057.10.1016/j.snb.2013.09.057Search in Google Scholar

Prensner, J. R., Rubin, M. A., Wei, J. T., & Chinnaiyan, A. M. (2012). Beyond PSA: The next generation of prostate cancer biomarkers. Science Translational Medicine, 4, 127rv123. DOI: 10.1126/scitranslmed.3003180.10.1126/scitranslmed.3003180Search in Google Scholar PubMed PubMed Central

Purcell, A. W., van Driel, I. R., & Gleeson, P. A. (2008). Impact of glycans on T-cell tolerance to glycosylated selfantigens. Immunology and Cell Biology, 86, 574-579. DOI: 10.1038/icb.2008.48.10.1038/icb.2008.48Search in Google Scholar PubMed

Qu, B., Guo, L., Chu, X., Wu, D. H., Shen, G. L., & Yu, R. Q. (2010). An electrochemical immunosensor based on enzyme-encapsulated liposomes and biocatalytic metal deposition. Analytica Chimica Acta, 663, 147-152. DOI: 10.1016/j.aca.2010.01.050.10.1016/j.aca.2010.01.050Search in Google Scholar PubMed

Raff, A. B., Gray, A., & Kast, W. M. (2009). Prostate stem cell antigen: A prospective therapeutic and diagnostic target. Cancer Letters, 277, 126-132. DOI: 10.1016/j.canlet.2008. 08.034.Search in Google Scholar

Reiter, R. E., Gu, Z. N., Watabe, T., Thomas, G., Szigeti, K., Davis, E., Wahl, M., Nisitani, S., Yamashiro, J., Le Beau, M. M., Loda, M., & Witte, O. N. (1998). Prostate stem cell antigen: A cell surface marker overexpressed in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 95, 1735-1740.10.1073/pnas.95.4.1735Search in Google Scholar PubMed PubMed Central

Reuel, N. F., Mu, B., Zhang, J. Q., Hinckley, A., & Strano, M. S. (2012). Nanoengineered glycan sensors enabling native glycoprofiling for medicinal applications: Towards profiling glycoproteins without labeling or liberation steps. Chemical Society Reviews, 41, 5744-5779. DOI: 10.1039/c2cs35142k.10.1039/c2cs35142kSearch in Google Scholar PubMed

Reuel, N. F., Grassbaugh, B., Kruss, S., Mundy, J. Z., Opel, C., Ogunniyi, A. O., Egodage, K., Wahl, R., Helk, B., Zhang, J. Q., Kalcioglu, Z. I., Tvrdy, K., Bellisario, D. O., Mu, B., Blake, S. S., Van Vliet, K. J., Love, J. C., Wittrup, K. D., & Strano, M. S. (2013). Emergent properties of nanosensor arrays: Applications for monitoring IgG affinity distributions, weakly affined hypermannosylation and colony selection for biomanufacturing. Acs Nano, 7, 7472-7482. DOI: 10.1021/nn403215e.10.1021/nn403215eSearch in Google Scholar PubMed

Revenig, L., Leung, A., & Hsiao,W. (2014). Ejaculatory physiology and pathophysiology: assessment and treatment in male infertility. Translational Andrology and Urology, 3, 41-49. DOI: 10.3978/j.issn.2223-4683.2014.02.02.Search in Google Scholar

Rich, R. R., Fleisher, T. A., Shearer, W. T., Schroeder, H., Frew, A. J., & Weyand, C. M. (2013). Clinical immunology: Principles and practice (Expert consult - online and print) (4th ed.). Elsevier.Search in Google Scholar

Rillahan, C. D., Antonopoulos, A., Lefort, C. T., Sonon, R., Azadi, P., Ley, K., Dell, A., Haslam, S. M., & Paulson, J. C. (2012). Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome. Nature Chemical Biology, 8, 661-668. DOI: 10.1038/nchembio.999.10.1038/nchembio.999Search in Google Scholar PubMed PubMed Central

Rudd, P. M., & Dwek, R. A. (1997). Glycosylation: Heterogeneity and the 3D structure of proteins. Critical Reviews in Biochemistry and Molecular Biology, 32, 1-100. DOI: 10.3109/10409239709085144.10.3109/10409239709085144Search in Google Scholar PubMed

Russell, P. J. (2006). iGenetics: A molecular approach. San Francisco, CA, USA: Benjamin Cummings.Search in Google Scholar

Saldova, R., Royle, L., Radcliffe, C. M., Abd Hamid, U. M., Evans, R., Arnold, J. N., Banks, R. E., Hutson, R., Harvey, D. J., Antrobus, R., Petrescu, S. M., Dwek, R. A., & Rudd, P. M. (2007). Ovarian cancer is associated with changes in glycosylation in both acute-phase proteins and IgG. Glycobiology, 17, 1344-1356. DOI: 10.1093/glycob/cwm100.10.1093/glycob/cwm100Search in Google Scholar PubMed

Saldova, R., Fan, Y., Fitzpatrick, J. M., Watson, R. W. G., & Rudd, P. M. (2011). Core fucosylation and α2-3 sialylation in serum N-glycome is significantly increased in prostate cancer comparing to benign prostate hyperplasia. Glycobiology, 21, 195-205. DOI: 10.1093/glycob/cwq147.10.1093/glycob/cwq147Search in Google Scholar PubMed

Salimi, A., Kavosi, B., Fathi, F., & Hallaj, R. (2013). Highly sensitive immunosensing of prostate-specific antigen based on ionic liquid-carbon nanotubes modified electrode: Application as cancer biomarker for prostate biopsies. Biosensors and Bioelectronics, 42, 439-446. DOI: 10.1016/j.bios.2012. 10.053.Search in Google Scholar

Sang, S. B., Zhao, Y., Zhang, W. D., Li, P. W., Hu, J., & Li, G. (2014). Surface stress-based biosensors. Biosensors and Bioelectronics, 51, 124-135. DOI: 10.1016/j.bios.2013.07.033.10.1016/j.bios.2013.07.033Search in Google Scholar PubMed

Sarrats, A., Saldova, R., Comet, J., O’Donoghue, N., de Llorens, R., Rudd, P. M., & Peracaula, R. (2010). Glycan characterization of PSA 2-DE subforms from serum and seminal plasma. OMICS: A Journal of Integrative Biology, 14, 465-474. DOI: 10.1089/omi.2010.0050.10.1089/omi.2010.0050Search in Google Scholar PubMed

Sawyers, C. L. (2008). The cancer biomarker problem. Nature, 452, 548-552. DOI: 10.1038/nature06913.10.1038/nature06913Search in Google Scholar PubMed

Schachter, H., & Freeze, H. H. (2009). Glycosylation diseases: Quo vadis? Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1792, 925-930. DOI: 10.1016/j.bbadis. 2008.11.002.Search in Google Scholar

Shen, G. G., Cai, C. B., & Yang, J. F. (2011). Fabrication of an electrochemical immunosensor based on a gold- hydroxyapatite nanocomposite-chitosan film. Electrochimica Acta, 56, 8272-8277. DOI: 10.1016/j.electacta.2011.06.090.10.1016/j.electacta.2011.06.090Search in Google Scholar

Shen, C. H., & Lin, J. C. (2013). Solvent and concentration effects on the surface characteristics and platelet compatibility of zwitterionic sulfobetaine-terminated self-assembled monolayers. Colloids and Surfaces B: Biointerfaces, 101, 376-383. DOI: 10.1016/j.colsurfb.2012.07.035.10.1016/j.colsurfb.2012.07.035Search in Google Scholar PubMed

Siegel, R., DeSantis, C., Virgo, K., Stein, K., Mariotto, A., Smith, T., Cooper, D., Gansler, T., Lerro, C., Fedewa, S., Lin, C. C., Leach, C., Cannady, R. S., Cho, H. S., Scoppa, S., Hachey, M., Kirch, R., Jemal, A., & Ward, E. (2012a). Cancer treatment and survivorship statistics, 2012. CA: A Cancer Journal for Clinicians, 62, 220-241. DOI: 10.3322/caac.21149.10.3322/caac.21149Search in Google Scholar PubMed

Siegel, R., Naishadham, D., & Jemal, A. (2012b). Cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 62, 10-29. DOI: 10.3322/caac.20138.10.3322/caac.20138Search in Google Scholar PubMed

Solis, D., Bovin, N. V., Davis, A. P., Jimenez-Barbero, J., Romero, A., Roy, R., Smetana, K., Jr., & Gabius, H. J. (2014). A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Biochimica et Biophysica Acta (BBA) - General Subjects, in press. DOI: 10.1016/j.bbagen.2014.03.016.10.1016/j.bbagen.2014.03.016Search in Google Scholar PubMed

Song, R. J., Oren, D. A., Franco, D., Seaman, M. S., & Ho, D. D. (2013). Strategic addition of an N-linked glycan to a monoclonal antibody improves its HIV-1-neutralizing activity. Nature Biotechnology, 31, 1047-1052. DOI: 10.1038/nbt.2677.10.1038/nbt.2677Search in Google Scholar PubMed PubMed Central

Sparbier, K., Koch, S., Kessler, I., Wenzel, T., & Kostrzewa, M. (2005). Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. Journal of Biomolecular Techniques, 16, 407-413.Search in Google Scholar

Suaifan, G. A. R. Y., Esseghaier, C., Ng, A., & Zourob, M. (2012). Wash-less and highly sensitive assay for prostate specific antigen detection. The Analyst, 137, 5614-5619. DOI: 10.1039/c2an36243k.10.1039/c2an36243kSearch in Google Scholar PubMed

Susloparova, A., Koppenh¨ofer, D., Vu, X. T., Weil, M., & Ingebrandt, S. (2013). Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells. Biosensors and Bioelectronics, 40, 50-56. DOI: 10.1016/j.bios.2012.06.006.10.1016/j.bios.2012.06.006Search in Google Scholar PubMed

Svarovsky, S. A., & Joshi, L. (2014). Cancer glycan biomarkers and their detection - past, present and future. Analytical Methods, 6, 3918-3936. DOI: 10.1039/c3ay42243g.10.1039/C3AY42243GSearch in Google Scholar

Szunerits, S., Maalouli, N.,Wijaya, E., Vilcot, J. P., & Boukherroub, R. (2013). Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces. Analytical and Bioanalytical Chemistry, 405, 1435-1443. DOI: 10.1007/s00216-012-6624-0.10.1007/s00216-012-6624-0Search in Google Scholar PubMed

Tabarés, G., Radcliffe, C. M., Barrabes, S., Ramirez, M., Aleixandre, R. N., Hoesel, W., Dwek, R. A., Rudd, P. M., Peracaula, R., & de Llorens, R. (2006). Different glycan structures in prostate-specific antigen from prostate cancer sera in relation to seminal plasma PSA. Glycobiology, 16, 132-145. DOI: 10.1093/glycob/cwj042.10.1093/glycob/cwj042Search in Google Scholar PubMed

Tabesh, A., Teverovskiy, M., Pang, H. Y., Kumar, V. P., Verbel, D., Kotsianti, A., & Saidi, O. (2007). Multifeature prostate cancer diagnosis and gleason grading of histological images. IEEE Transactions on Medical Imaging, 26, 1366-1378. DOI: 10.1109/tmi.2007.898536.10.1109/TMI.2007.898536Search in Google Scholar PubMed

Taira, A., Merrick, G.,Wallner, K., & Dattoli, M. (2007). Reviving the acid phosphatase test for prostate cancer. Oncology, 21, 1003-1010.Search in Google Scholar

Tajiri, M., Ohyama, C., & Wada, Y. (2008). Oligosaccharide profiles of the prostate specific antigen in free and complexed forms from the prostate cancer patient serum and in semi seminal plasma: A glycopeptide approach. Glycobiology, 18, 2-8. DOI: 10.1093/glycob/cwm117.10.1093/glycob/cwm117Search in Google Scholar PubMed

Tamayo, J., Kosaka, P. M., Ruz, J. J., San Paulo, A., & Calleja, M. (2013). Biosensors based on nanomechanical systems. Chemical Society Reviews, 42, 1287-1311. DOI: 10.1039/c2cs35293a.10.1039/C2CS35293ASearch in Google Scholar PubMed

Tian, J. N., Huang, J. L., Zhao, Y. C., & Zhao, S. L. (2012). Electrochemical immunosensor for prostate-specific antigen using a glassy carbon electrode modified with a nanocomposite containing gold nanoparticles supported with starchfunctionalized multi-walled carbon nanotubes. Microchimica Acta, 178, 81-88. DOI: 10.1007/s00604-012-0816-3.10.1007/s00604-012-0816-3Search in Google Scholar

Tkac, J., & Davis, J. J. (2009). Label-free field effect protein sensing. In J. Davis (Ed.), Engineering the bioelectronic interface: Applications to analyte biosensing and protein detection (pp. 193-224). Cambridge, UK: Royal Society of Chemistry. DOI: 10.1039/9781847559777-00193.10.1039/9781847559777-00193Search in Google Scholar

Tkac, J., Bertok, T., Nahalka, J., & Gemeiner, P. (2014). Perspectives in glycomics and lectin engineering. In J. Hirabayashi (Ed.) Methods in molecular biology (pp. 421-445). New York, NY, USA: Springer. DOI: 10.1007/978-1-4939-1292-6 37.10.1007/978-1-4939-1292-6Search in Google Scholar

Tousi, F., Hancock, W. S., & Hincapie, M. (2011). Technologies and strategies for glycoproteomics and glycomics and their application to clinical biomarker research. Analytical Methods, 3, 20-32. DOI: 10.1039/c0ay00413h.10.1039/C0AY00413HSearch in Google Scholar

Ueda, K., Tatsuguchi, A., Saichi, N., Toyama, A., Tamura, K., Furihata, M., Takata, R., Akamatsu, S., Igarashi, M., Nakayama, M., Sato, T. A., Ogawa, O., Fujioka, T., Shuin, T., Nakamura, Y., & Nakagawa, H. (2013). Plasma lowmolecular- weight proteome profiling identified neuropeptide- Y as a prostate cancer biomarker polypeptide. Journal of Proteome Research, 12, 4497-4506. DOI: 10.1021/pr400547s.10.1021/pr400547sSearch in Google Scholar PubMed

Varki, A., & Chrispeels, M. J. (1999). Essentials of glycobiology. New York, NY, USA: Cold Spring Harbor.Search in Google Scholar

Vector Laboratories (2012). Table of lectin properties. Retrieved on June 2014, from https://www.vectorlabs.com/data/brochures/K4-K7.pdf Search in Google Scholar

Végvari, A., Rezeli, M., Sihlbom, C., Hakkinen, J., Carlsohn, E., Malm, J., Lilja, H., Laurell, T., & Marko-Varga, G. (2012). Molecular microheterogeneity of prostate specific antigen in seminal fluid by mass spectrometry. Clinical Biochemistry, 45, 331-338. DOI: 10.1016/j.clinbiochem.2011.11.018.10.1016/j.clinbiochem.2011.11.018Search in Google Scholar PubMed PubMed Central

Vis, A. N., & Schr¨oder, F. H. (2009). Key targets of hormonal treatment of prostate cancer. Part 1: The androgen receptor and steroidogenic pathways. BJU International, 104, 438-448. DOI: 10.1111/j.1464-410x.2009.08695.x.10.1111/j.1464-410X.2009.08695.xSearch in Google Scholar PubMed

Vollmer, R. T., & Humphrey, P. A. (2001). The relative importance of anatomic and PSA factors to outcomes after radical prostatectomy for prostate cancer. American Journal of Clinical Pathology, 116, 864-870. DOI: 10.1309/7mq7-mwar-4w8a-r75f.10.1309/7MQ7-MWAR-4W8A-R75FSearch in Google Scholar PubMed

Wang, J. P., & Yau, S. T. (2013). Detection of prostate specific antigen in serum at the femto-gram per milliliter level using the intrinsic amplification of a field-effect enzymatic immuno-sensing system. Electrochimica Acta, 111, 92-98. DOI: 10.1016/j.electacta.2013.08.046.10.1016/j.electacta.2013.08.046Search in Google Scholar

Wang, Z., Chinoy, Z. S., Ambre, S. G., Peng, W., McBride, R., de Vries, R. P., Glushka, J., Paulson, J. C., & Boons, G. J. (2013a). A general strategy for the chemoenzymatic synthesis of asymmetrically branched N-glycans. Science, 341, 379-383. DOI: 10.1126/science.1236231.10.1126/science.1236231Search in Google Scholar PubMed PubMed Central

Wang, H., Zhang, Y., Yu, H. Q., Wu, D., Ma, H. M., Li, H., Du, B., & Wei, Q. (2013b). Label-free electrochemical immunosensor for prostate-specific antigen based on silver hybridized mesoporous silica nanoparticles. Analytical Biochemistry, 434, 123-127. DOI: 10.1016/j.ab.2012.11.012.10.1016/j.ab.2012.11.012Search in Google Scholar PubMed

Wang, K., Fan, D. D., Jin, S., Xing, N. Z., & Niu, Y. N. (2014). Differential expression of 5-alpha reductase isozymes in the prostate and its clinical implications. Asian Journal of Andrology, 16, 274-279. DOI: 10.4103/1008-682x.123664.10.4103/1008-682X.123664Search in Google Scholar PubMed PubMed Central

WebPathology (2014). Prostate. Retrieved on June 2014, from http://www.webpathology.com Search in Google Scholar

White, K. Y., Rodemich, L., Nyalwidhe, J. O., Comunale, M. A., Clements, M. A., Lance, R. S., Schellhammer, P. F., Mehta, A. S., Semmes, O. J., & Drake, R. R. (2009). Glycomic characterization of prostate-specific antigen and prostatic acid phosphatase in prostate cancer and benign disease seminal plasma fluids. Journal of Proteome Research, 8, 620-630. DOI: 10.1021/pr8007545.10.1021/pr8007545Search in Google Scholar PubMed PubMed Central

Wu, G. H., Datar, R. H., Hansen, K. M., Thundat, T., Cote, R. J., & Majumdar, A. (2001). Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature Biotechnology, 19, 856-860. DOI: 10.1038/nbt0901-856.10.1038/nbt0901-856Search in Google Scholar

Xu, S. J., Liu, Y., Wang, T. H., & Li, J. H. (2011). Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Analytical Chemistry, 83, 3817-3823. DOI: 10.1021/ac200237j.10.1021/ac200237jSearch in Google Scholar

Xu, Q., & Davis, J. J. (2014). The diagnostic utility of electrochemical impedance. Electroanalysis, 26, 1249-1258. DOI: 10.1002/elan.201400035.10.1002/elan.201400035Search in Google Scholar

Xu, J. J., Zhao, W. W., Song, S. P., Fan, C. H., & Chen, H. Y. (2014). Functional nanoprobes for ultrasensitive detection of biomolecules: An update. Chemical Society Reviews, 43, 1601-1611. DOI: 10.1039/c3cs60277j.10.1039/C3CS60277JSearch in Google Scholar

Yang, L., Biswas, M. E., & Chen, P. (2003). Study of binding between protein A and immunoglobulin G using a surface tension probe. Biophysical Journal, 84, 509-522. DOI: 10.1016/s0006-3495(03)74870-x.10.1016/S0006-3495(03)74870-XSearch in Google Scholar

Yang, M. H., Javadi, A., Li, H., & Gong, S. Q. (2010). Ultrasensitive immunosensor for the detection of cancer biomarker based on graphene sheet. Biosensors and Bioelectronics, 26, 560-565. DOI: 10.1016/j.bios.2010.07.040.10.1016/j.bios.2010.07.040Search in Google Scholar PubMed

Yang, M. H., Javadi, A., & Gong, S. Q. (2011). Sensitive electrochemical immunosensor for the detection of cancer biomarker using quantum dot functionalized graphene sheets as labels. Sensors and Actuators B: Chemical, 155, 357-360. DOI: 10.1016/j.snb.2010.11.055.10.1016/j.snb.2010.11.055Search in Google Scholar

Yoshida, K., Krasznai, Z. T., Krasznai, Z., Yoshiike, M., Kawano, N., Yoshida, M., Morisawa, M., Toth, Z., Bazsane, Z. K., Marian, T., & Iwamoto, T. (2009). Functional implications of membrane modification with semenogelins for inhibition of sperm motility in humans. Cell Motility and the Cytoskeleton, 66, 99-108. DOI: 10.1002/cm.20329.10.1002/cm.20329Search in Google Scholar PubMed

Yuan, Y., Yuan, R., Chai, Y. Q., Zhuo, Y., Bai, L. J., & Liao, Y. H. (2010). An electrochemical enzyme bioaffinity electrode based on biotin-streptavidin conjunction and bienzyme substrate recycling for amplification. Analytical Biochemistry, 405, 121-126. DOI: 10.1016/j.ab.2010.05.025.10.1016/j.ab.2010.05.025Search in Google Scholar PubMed

Zeng, X. Q., Shen, Z. H., & Mernaugh, R. (2012a). Recombinant antibodies and their use in biosensors. Analytical and Bioanalytical Chemistry, 402, 3027-3038. DOI: 10.1007/s00216-011-5569-z.10.1007/s00216-011-5569-zSearch in Google Scholar PubMed PubMed Central

Zeng, X. Q., Andrade, C. A. S., Oliveira, M. D. L., & Sun, X. L. (2012b). Carbohydrate-protein interactions and their biosensing applications. Analytical and Bioanalytical Chemistry, 402, 3161-3176. DOI: 10.1007/s00216-011-5594-y.10.1007/s00216-011-5594-ySearch in Google Scholar PubMed

Zeng, S. W., Baillargeat, D., Ho, H. P., & Yong, K. T. (2014). Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chemical Society Reviews, 43, 3426-3452. DOI: 10.1039/c3cs60479a.10.1039/c3cs60479aSearch in Google Scholar PubMed

Zhao, N., He, Y. Q., Mao, X., Sun, Y. H., Zhang, X. B., Li, C. Z., Lin, Y. H., & Liu, G. D. (2010). Electrochemical assay of active prostate-specific antigen (PSA) using ferrocenefunctionalized peptide probes. Electrochemistry Communications, 12, 471-474. DOI: 10.1016/j.elecom.2010.01.022.10.1016/j.elecom.2010.01.022Search in Google Scholar

Zhu, L., Jaamaa, S., af Hallstr¨om, T. M., Laiho, M., Sankila, A., Nordling, S., Stenman, U. H., & Koistinen, H. (2013). PSA forms complexes with α1-antichymotrypsin in prostate. The Prostate, 73, 219-226. DOI: 10.1002/pros.22560.10.1002/pros.22560Search in Google Scholar PubMed

Zylka, M. J., Sowa, N. A., Taylor-Blake, B., Twomey, M. A., Herrala, A., Voikar, V., & Vihko, P. (2008). Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine. Neuron, 60, 111-122. DOI: 10.1016/j.neuron.2008.08.024. 10.1016/j.neuron.2008.08.024Search in Google Scholar PubMed PubMed Central

Received: 2014-6-11
Revised: 2014-8-15
Accepted: 2014-8-28
Published Online: 2014-11-28
Published in Print: 2015-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Biosensors – Topical issue
  2. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
  3. Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
  4. Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
  5. Application of nanomaterials in microbial-cell biosensor constructions
  6. Use of green fluorescent proteins for in vitro biosensing
  7. Biosensors based on molecular beacons
  8. DNA aptamer-based detection of prostate cancer
  9. Can glycoprofiling be helpful in detecting prostate cancer?
  10. Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
  11. Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
  12. Surface plasmon resonance application in prostate cancer biomarker research
  13. Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
  14. Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
  15. Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
  16. Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
  17. Whole-cell optical biosensor for mercury – operational conditions in saline water
  18. Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
  19. Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
  20. Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
  21. Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
  22. Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
  23. Can voltammetry distinguish glycan isomers?
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0052/html?lang=en
Scroll to top button