Abstract
The functions of metal structures of micro- or nano-dimensions in the sensing mechanisms of amperometric enzyme-based biosensors are considered in the light of the principles of detection of the latter. The applications of metal mono- or bimetallic nanoparticles-modified materials as catalytic electrodes in the fabrication of first-generation and the role which metal nanoparticles play in promoting or enhancing the electron transfer rates in third-generation electrochemical biosensors are reviewed. Some examples of gold NPs functionalised with enzymes via gold-thiol chemistry as a strategy for enzyme immobilisation and spatial orientation when developing amperometric biosensors are also discussed.
References
Aili, D., & Liedberg, B. (2010). Biomimetic approaches to self- assembly of nanomaterials. In C. S. S. R. Kumar (Ed.), Biomimetic and bioinspired nanomaterials (Series: Nanoma- terials for the life sciences, Chapter 10, pp. 343-377). Wein- heim, Germany: Wiley-VCH. DOI: 10.1002/9783527610419. ntls0212.10.1002/9783527610419Search in Google Scholar
Alexeyeva, N., Laaksonen, T., Kontturi, K., Mirkhalaf, F., Schiffrin, D. J., & Tammeveski, K. (2006). Oxygen re- duction on gold nanoparticle/multi-walled carbon nan- otubes modified glassy carbon electrodes in acid solu- tion. Electrochemistry Communications, 8, 1475-1480. DOI: 10.1016/j.elecom.2006.07.002.10.1016/j.elecom.2006.07.002Search in Google Scholar
Arduini, F., Amine, A., Moscone, D., & Palleschi, G. (2010). Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Microchimica Acta, 170, 193-214. DOI: 10.1007/s00604-010-0317-1.10.1007/s00604-010-0317-1Search in Google Scholar
Batra, B., & Pundir, C. S. (2013). An amperometric gluta-mate biosensor based on immobilization of glutamate oxi-dase onto carboxylated multiwalled carbon nanotubes/goldnanoparticles/chitosan composite film modified Au elec- trode. Biosensors and Bioelectronics, 47, 496-501. DOI:10.1016/j.bios.2013.03.063.10.1016/j.bios.2013.03.063Search in Google Scholar PubMed
Bharathi, S., & Lev, O. (1997). Direct synthesis of gold nanodispersions in sol-gel derived silicate sols, gels and films. Chemical Communications, 1997, 2303-2304. DOI:10.1039/a705609e.10.1039/a705609eSearch in Google Scholar
Bron, M. (2008). Carbon black supported gold nanoparticles for oxygen electroreduction in acidic electrolyte solution. Journal of Electroanalytical Chemistry, 624, 64-68. DOI:10.1016/j.jelechem.2008.07.026.10.1016/j.jelechem.2008.07.026Search in Google Scholar
Brondani, D., de Souza, B., Souza, B. S., Neves, A., & Vieira, I. C. (2013). PEI-coated gold nanoparticles decorated with lac-case: A new platform for direct electrochemistry of enzymes and biosensing applications. Biosensors and Bioelectronics, 42, 242-247. DOI: 10.1016/j.bios.2012.10.087.10.1016/j.bios.2012.10.087Search in Google Scholar PubMed
Chandrasekharan, N., & Kamat, P. V. (2001). Assembling gold nanoparticles as nanostructured films using an elec-trophoretic approach. Nano Letters, 1, 67-70. DOI: 10.1021/nl000184f.10.1021/nl000184fSearch in Google Scholar
Charmantray, F., Touisni, N., Hecquet, L., & Mousty, C. (2013). Amperometric biosensor based on galactose oxidase immo-bilized in clay matrix. Electroanalysis, 25, 630-635. DOI:10.1002/elan.201200274.10.1002/elan.201200274Search in Google Scholar
Chauhan, N., Narang, J., Sunny, & Pundir, C. S. (2013). Immo-bilization of lysine oxidase on a gold-platinum nanoparticles modified Au electrode for detection of lysine. Enzyme and Microbial Technology, 52, 265-271. DOI: 10.1016/j.enzmictec.2013.01.006.10.1016/j.enzmictec.2013.01.006Search in Google Scholar PubMed
Chikae, M., Idegami, K., Kerman, K., Nagatani, N., Ishikawa, M., Takamura, Y., & Tamiya, E. (2006). Direct fabrication of catalytic metal nanoparticles onto the surface of a screen- printed carbon electrode. Electrochemistry Communications, 8, 1375-1380. DOI: 10.1016/j.elecom.2006.06.019.10.1016/j.elecom.2006.06.019Search in Google Scholar
Choi, H. N., Han, J. H., Park, J. A., Lee, J. M., & Lee, W. Y. (2007). Amperometric glucose biosensor based on glucose ox- idase encapsulated in carbon nanotube-titania-Nafion com- posite film on platinized glassy carbon electrode. Electroanal- ysis, 19, 1757-1763. DOI: 10.1002/elan.200703958.10.1002/elan.200703958Search in Google Scholar
Comba, F. N., Rubianes, M. D., Herrasti, P., & Rivas, G. A. (2010). Glucose biosensing at carbon paste electrodes con- taining iron nanoparticles. Sensors and Actuators B: Chem- ical, 149, 306-309. DOI: 10.1016/j.snb.2010.06.020.10.1016/j.snb.2010.06.020Search in Google Scholar
Crespilho, F. N., Iost, R. M., Travain, S. A., Oliveira, O. N., Jr., & Zucolotto, V. (2009). Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites. Biosensors and Bioelectronics, 24, 3073-3077. DOI: 10.1016/j.bios.2009.03.026.10.1016/j.bios.2009.03.026Search in Google Scholar PubMed
Cui, J., Adeloju, S. B., & Wu, Y. (2014). Integration of a highly ordered gold nanowires array with glucose oxidase for ultra- sensitive glucose detection. Analytica Chimica Acta, 809, 134-140. DOI: 10.1016/j.aca.2013.11.024.10.1016/j.aca.2013.11.024Search in Google Scholar PubMed
Dai, X., & Compton, R. G. (2006). Direct electrodeposition of gold nanoparticles onto indium tin oxide film coated glass: Application to the detection of arsenic(III). Analytical Sci- ences, 22, 567-570. DOI: 10.2116/analsci.22.567. de Dios, A. S., & Díaz-García, M. E. (2010). Multifunctional nanoparticles: Analytical prospects. Analytica Chimica Acta, 666, 1-22. DOI: 10.1016/j.aca.2010.03.038.10.1016/j.aca.2010.03.038Search in Google Scholar PubMed PubMed Central
Dhawan, G., Sumana, G., & Malhotra, B. D. (2009). Recent developments in urea biosensors. Biochemical Engineering Journal, 44, 42-52. DOI: 10.1016/j.bej.2008.07.004.10.1016/j.bej.2008.07.004Search in Google Scholar
Di, J., Shen, C., Peng, S., Tu, Y., & Li, S. (2005). A one-step method to construct a third-generation biosensor based on horseradish peroxidase and gold nanoparticles embedded in silica sol-gel network on gold modified electrode. Analytica Chimica Acta, 553, 196-200. DOI: 10.1016/j.aca.2005.08.013.10.1016/j.aca.2005.08.013Search in Google Scholar
Dimcheva, N., Horozova, E., & Jordanova, Z. (2002a). An amperometric xanthine oxidase enzyme electrode based on hydrogen peroxide electroreduction. Zeitschrift für Natur-forschung C - A Journal of Biosciences, 57c, 883-889.10.1515/znc-2002-9-1021Search in Google Scholar PubMed
Dimcheva, N., Horozova, E., & Jordanova, Z. (2002b). A glucose oxidase immobilized electrode based on modified graphite. Zeitschrift für Naturforschung C - A Journal of Biosciences, 57c, 705-711.10.1515/znc-2002-7-826Search in Google Scholar PubMed
Dimcheva, N. D., Horozova, E. G., & Dodevska, T. M. (2011). Direct electrochemistry of myoglobin immobilized on non- modified and modified graphite. Bulgarian Chemical Com- munications, 43, 17-22.Search in Google Scholar
Dimcheva, N., Horozova, E., Ivanov, Y., & Godjevargova, T. (2013a). Self-assembly of acetylcholinesterase on gold nanoparticles electrodeposited on graphite. Central Euro- pean Journal of Chemistry, 11, 1740-1748. DOI: 10.2478/ s11532-013-0307-3.10.2478/s11532-013-0307-3Search in Google Scholar
Dimcheva, N., Dodevska, T., & Horozova, E. (2013b). Direct electrochemistry of ascorbate oxidase self-assembled on Au- modified glassy carbon. Journal of the Electrochemical So- ciety, 160, H414-H419. DOI: 10.1149/2.025308jes.10.1149/2.025308jesSearch in Google Scholar
Dimcheva, N., Horozova, E., & Dodevska, T. (2014). Elec- trochemical activity of two redox biocatalysts promoted by gold nanostructures: A proof of principle and applications in biosensing. In Book of Abstracts of the 8th National Confer- ence on Chemistry: Chemistry for Sustainable Development, June 26-27, 2014 (pp. 11, 1-O7). Sofia, Bulgaria: Union of Chemists in Bulgaria.Search in Google Scholar
Do, J. S., Lin, K. H., & Ohara, R. (2011). Preparation of urease/nano-structured polyaniline-Nafion@ /Au/Al2 O3 electrode for inhibitive detection of mercury ion. Journal of the Taiwan Institute of Chemical Engineers, 42, 662-668. DOI: 10.1016/j.jtice.2010.11.007.10.1016/j.jtice.2010.11.007Search in Google Scholar
Dobbs, W., Suisse, J. M., Douce, L., & Welter, R. (2006). Electrodeposition of silver particles and gold nanoparticles from ionic liquid-crystal precursors. Angewandte Chemie, 118, 4285-4288. DOI: 10.1002/ange.200600929.10.1002/ange.200600929Search in Google Scholar
Dodevska, T., Horozova, E., & Dimcheva, N. (2006). Electrocat- alytic reduction of hydrogen peroxide on modified graphite electrodes: Application to the development of glucose biosen- sors. Analytical and Bioanalytical Chemistry, 386, 1413-1418. DOI: 10.1007/s00216-006-0682-0.10.1007/s00216-006-0682-0Search in Google Scholar PubMed
Dodevska, T., Horozova, E., & Dimcheva, N. (2010). De- sign of an amperometric xanthine biosensor based on a graphite transducer patterned with noble metal microparti- cles. Central European Journal of Chemistry, 8, 19-27. DOI: 10.2478/s11532-009-0102-3.10.2478/s11532-009-0102-3Search in Google Scholar
Dodevska, T., Horozova, E., & Dimcheva, N. (2013). Elec- trochemical behavior of ascorbate oxidase immobilized on graphite electrode modified with Au-nanoparticles. Materi- als Science and Engineering B: Solid-State Materials for Ad- vanced Technology, 178, 1497-1502. DOI: 10.1016/j.mseb.2013.08.012.10.1016/j.mseb.2013.08.012Search in Google Scholar
Doria, G., Conde, J., Veigas, B., Giestas, L., Almeida, C., As- sun¸c˜ao, M., Rosa, J., & Baptista, P. V. (2012). Noble metal nanoparticles for biosensing applications. Sensors, 12, 1657-1687. DOI: 10.3390/s120201657.10.3390/s120201657Search in Google Scholar PubMed PubMed Central
Du, D., Ding, J., Cai, J., & Zhang, A. (2007a). Electro- chemical thiocholine inhibition sensor based on biocatalytic growth of Au nanoparticles using chitosan as template. Sensors and Actuators B: Chemical, 127, 317-322. DOI:10.1016/j.snb.2007.04.023.10.1016/j.snb.2007.04.023Search in Google Scholar
Du, D., Huang, X., Cai, J., & Zhang, A. (2007b). Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan ma- trix. Sensors and Actuators B: Chemical, 127, 531-535. DOI:10.1016/j.snb.2007.05.006.10.1016/j.snb.2007.05.006Search in Google Scholar
Du, D., Chen, W., Cai, J., Zhang, J., Qu, F., & Li, H. (2008). Development of acetylcholinesterase biosensor based on CdTe quantum dots modified cysteamine self-assembled monolay- ers. Journal of Electroanalytical Chemistry, 623, 81-85. DOI:10.1016/j.jelechem.2008.06.020.10.1016/j.jelechem.2008.06.020Search in Google Scholar
Du, D., Chen, W., Cai, J., Zhang, J., Tu, H., & Zhang, A. (2009). Acetylcholinesterase biosensor based on gold nanoparticles and cysteamine self assembled monolayer for determination of monocrotophos. Journal of Nanoscience and Nanotech- nology, 9, 2368-2373. DOI: 10.1166/jnn.2009.se24.10.1166/jnn.2009.SE24Search in Google Scholar
El-Deab, M. S., & Ohsaka, T. (2002a). An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles- electrodeposited gold electrodes. Electrochemistry Commu- nications, 4, 288-292. DOI: 10.1016/s1388-2481(02)00263-1.10.1016/S1388-2481(02)00263-1Search in Google Scholar
El-Deab, M. S., & Ohsaka, T. (2002b). Hydrodynamic voltam-metric studies of the oxygen reduction at gold nanoparticles- electrodeposited gold electrodes. Electrochimica Acta, 47, 4255-4261. DOI: 10.1016/s0013-4686(02)00487-5.10.1016/S0013-4686(02)00487-5Search in Google Scholar
El-Deab, M. S., & Ohsaka, T. (2003). Electrocatalysis by nanoparticles: oxygen reduction on gold nanoparticles-elec- trodeposited platinum electrodes. Journal of Electroanalyt- ical Chemistry, 553, 107-115. DOI: 10.1016/s0022-0728(03)00291-2.10.1016/S0022-0728(03)00291-2Search in Google Scholar
El-Deab, M. S., Sotomura, T., & Ohsaka, T. (2005a). Oxygen reduction at electrochemically deposited crystallographically oriented Au(1 0 0)-like gold nanoparticles. Electrochemistry Communications, 7, 29-34. DOI: 10.1016/j.elecom.2004.10.010.10.1016/j.elecom.2004.10.010Search in Google Scholar
El-Deab, M. S., Sotomura, T., & Ohsaka, T. (2005b). Mor-phological selection of gold nanoparticles electrodeposited on various substrates. Journal of the Electrochemical Society, 152, C730-C737. DOI: 10.1149/1.2041948.10.1149/1.2041948Search in Google Scholar
El-Deab, M. S., Sotomura, T., & Ohsaka, T. (2005c). Size and crystallographic orientation controls of gold nanoparticles electrodeposited on GC electrodes. Journal of the Electro-chemical Society, 152, C1-C6. DOI: 10.1149/1.1824041.10.1149/1.1824041Search in Google Scholar
El-Deab, M. S., & Ohsaka, T. (2006). Electrocatalytic reduction of oxygen at Au nanoparticles-manganese oxide nanoparticle binary catalysts. Journal of the Electrochemical Society, 153, A1365-A1371. DOI: 10.1149/1.2196707.10.1149/1.2196707Search in Google Scholar
El-Deab, M. S., Sotomura, T., & Ohsaka, T. (2006). Oxygen reduction at Au nanoparticles electrodeposited on different carbon substrates. Electrochimica Acta, 52, 1792-1798. DOI: 10.1016/j.electacta.2005.12.057.10.1016/j.electacta.2005.12.057Search in Google Scholar
El-Deab, M. S., & Ohsaka, T. (2007). Electrocatalysis by de-sign: Effect of the loading level of Au nanoparticles-MnOxnanoparticles binary catalysts on the electrochemical reduction of molecular oxygen. Electrochimica Acta, 52, 2166-2174. DOI: 10.1016/j.electacta.2006.08.041.10.1016/j.electacta.2006.08.041Search in Google Scholar
El-Deab, M. S. (2009). On the preferential crystallographic orientation of Au nanoparticles: Effect of electrodeposition time. Electrochimica Acta, 54, 3720-3725. DOI:10.1016/j.electacta.2009.01.054.10.1016/j.electacta.2009.01.054Search in Google Scholar
El-Deab, M. S. (2010). Electrocatalysis by nanoparticles: Oxidation of formic acid at manganese oxide nanorods-modified Pt planar and nanohole-arrays. Journal of Advanced Research, 1, 87-93. DOI: 10.1016/j.jare.2010.01.001.10.1016/j.jare.2010.01.001Search in Google Scholar
El-Nagar, G. A., Mohammad, A. M., El-Deab, M. S., & El-Anadouli, B. E. (2013). Electrocatalysis by design: Enhanced electrooxidation of formic acid at platinum nanoparticles-nickel oxide nanoparticles binary catalysts. Electrochimica Acta, 94, 62-71. DOI: 10.1016/j.electacta.2013.01.133.10.1016/j.electacta.2013.01.133Search in Google Scholar
Erikson, H., Jürmann, G., Sarapuu, A., Potter, R. J., & Tam-meveski, K. (2009). Electroreduction of oxygen on carbon-supported gold catalysts. Electrochimica Acta, 54, 7483-7489. DOI: 10.1016/j.electacta.2009.08.001.10.1016/j.electacta.2009.08.001Search in Google Scholar
Frasca, S., Rojas, O., Salewski, J., Neumann, B., Stiba, K., Weidinger, I. M., Tiersch, B., Leimkühler, S., Koetz, J., & Wollenberger, U. (2012). Human sulfite oxidase electrochemistry on gold nanoparticles modified electrode. Bioelectrochemistry, 87, 33-41. DOI: 10.1016/j.bioelechem.2011.11.012.10.1016/j.bioelechem.2011.11.012Search in Google Scholar PubMed
Freeman, R. G., Hommer, M. B., Grabar, K. C., Jackson, M. A., & Natan, M. J. (1996). Ag-clad Au nanoparticles: Novelaggregation, optical, and surface-enhanced Raman scattering properties. The Journal of Physical Chemistry, 100, 718-724. DOI: 10.1021/jp951379s.10.1021/jp951379sSearch in Google Scholar
Freestone, I., Meeks, N., Sax, M., & Higgitt, C. (2007). The Lycurgus Cup - a Roman nanotechnology. Gold Bulletin, 40, 270-277. DOI: 10.1007/bf03215599.10.1007/BF03215599Search in Google Scholar
Fu, C., Zhou, H., Xie, D., Sun, L., Yin, Y., Chen, J., & Kuang, Y. (2010). Electrodeposition of gold nanoparticles from ionicliquid microemulsion. Colloid and Polymer Science, 288, 1097-1103. DOI: 10.1007/s00396-010-2238-2.10.1007/s00396-010-2238-2Search in Google Scholar
Gao, F., El-Deab, M. S., Okajima, T., & Ohsaka, T. (2005). Electrochemical preparation of a Au crystal with peculiar morphology and unique growth orientation and its catalysis for oxygen reduction. Journal of the Electrochemical Society,152, A1226-A1232. DOI: 10.1149/1.1906023.10.1149/1.1906023Search in Google Scholar
Gartia, M. R., Hsiao, A., Pokhriyal, A., Seo, S., Kulsharova, G., Cunningham, B. T., Bond, T. C., & Liu, G. L. (2013). Colorimetric plasmon resonance imaging using nano Lycurgus Cup arrays. Advanced Optical Materials, 1, 68-76. DOI:10.1002/adom.201200040.10.1002/adom.201200040Search in Google Scholar
Ghindilis, A. L., Atanasov, P., & Wilkins, E. (1997). Enzymecatalyzed direct electron transfer: Fundamentals and analytical applications. Electroanalysis, 9, 661-674. DOI: 10.1002/elan.1140090902.10.1002/elan.1140090902Search in Google Scholar
Ghosh, S. K., & Pal, T. (2007). Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chemical Reviews, 107, 4797-4862. DOI: 10.1021/cr0680282.10.1021/cr0680282Search in Google Scholar
Gloaguen, F., Léger, J. M., Lamy, C., Marmann, A., Stimming, U., & Vogel, R. (1999). Platinum electrodeposition on graphite: electrochemical study and STM imaging. Electrochimica Acta, 44, 1805-1816. DOI: 10.1016/s0013-4686(98)00332-6.10.1016/S0013-4686(98)00332-6Search in Google Scholar
Gorton, L., Lindgren, A., Larsson, T., Munteanu, F. D., Ruzgas, T., & Gazaryan, I. (1999). Direct electron transfer betweenheme-containing enzymes and electrodes as basis for third generation biosensors. Analytica Chimica Acta, 400, 91-108. DOI: 10.1016/s0003-2670(99)00610-8.10.1016/S0003-2670(99)00610-8Search in Google Scholar
Haghighi, B., & Tabrizi, M. A. (2013). Direct electron transfer from glucose oxidase immobilized on an overoxidized polypyrrole film decorated with Au nanoparticles. Colloids and Surfaces B: Biointerfaces, 103, 566-571. DOI:10.1016/j.colsurfb.2012.11.010.10.1016/j.colsurfb.2012.11.010Search in Google Scholar PubMed
Holland, J. T., Lau, C., Brozik, S., Atanassov, P., & Banta, S. (2011). Engineering of glucose oxidase for direct electron transfer via site-specific gold nanoparticle conjugation. Journal of the American Chemical Society, 133, 19262-19265. DOI: 10.1021/ja2071237.10.1021/ja2071237Search in Google Scholar PubMed
Horozova, E. G., Dimcheva, N. D., & Jordanova, Z. J. (2000). Study of xanthine oxidase immobilized electrode based on modified graphite. Zeitschrift für Naturforschung C - A Journal of Biosciences, 55c, 60-65.10.1515/znc-2000-1-212Search in Google Scholar PubMed
Horozova, E., Dodevska, T., & Dimcheva, N. (2009). Modified graphites: Application to the development of enzyme-based amperometric biosensors. Bioelectrochemistry, 74, 260-264. DOI: 10.1016/j.bioelechem.2008.09.003.10.1016/j.bioelechem.2008.09.003Search in Google Scholar PubMed
Hsu, S. Y., Bartling, B., Wang, C., Shieu, F. S., & Liu, C. C. (2010). Enzymatic determination of diglyceride using an iridium nano-particle based single use, disposable biosensor. Sensors, 10, 5758-5773. DOI: 10.3390/s100605758.10.3390/s100605758Search in Google Scholar PubMed PubMed Central
Huang, K. J., Niu, D. J., Liu, X., Wu, Z. W., Fan, Y., Chang, Y. F., & Wu, Y. Y. (2011). Direct electrochemistry of catalase at amine-functionalized graphene/gold nanoparticles composite film for hydrogen peroxide sensor. Electrochimica Acta, 56, 2947-2953. DOI: 10.1016/j.electacta.2010.12.094.10.1016/j.electacta.2010.12.094Search in Google Scholar
Ilias, S. H., Kok, K. Y., Ng, I. K., & Saidin, N. U. (2013). Electrochemical synthesis and characterization of palladium nanostructures. Journal of Physics: Conference Series, 431, 012003. DOI: 10.1088/1742-6596/431/1/012003.10.1088/1742-6596/431/1/012003Search in Google Scholar
Ishikawa, H., Ida, T., & Kimura, K. (1996). Plasmon absorption of gold nanoparticles and their morphologies observed by AFM. Surface Review and Letters, 3, 1153-1156. DOI: 10.1142/s0218625x96002060.IUPAC (2005-2014). IUPAC compendium of chemical terminology - gold book. Version 2.3.3 (2014-02-24). Research Triangle Park, NC, USA: International Union of Pure and Applied Chemistry. DOI: 10.1351/goldbook.10.1351/goldbookSearch in Google Scholar
Jäckel, F., & Feldmann, J. (2012). Surface-enhanced Ramanscattering using complex-shaped metal nanostructures. In T. K. Sau, & A. L. Rogach (Eds.), Complex-shaped metal nanoparticles: Bottom-up syntheses and applications (Chapter 13, pp. 429-454). Weinheim, Germany: Wiley-VCH. DOI: 10.1002/9783527652570.ch13.10.1002/9783527652570.ch13Search in Google Scholar
Jia, W., Su, L., & Lei, Y. (2011). Pt nanoflower/polyaniline composite nanofibers based urea biosensor. Biosensors and Bioelectronics, 30, 158-164. DOI: 10.1016/j.bios.2011.09.006.10.1016/j.bios.2011.09.006Search in Google Scholar PubMed
Karimi, S., Ghourchian, H., Rahimi, P., & Rafiee-Pour, H. A. (2012). A nanocomposite based biosensor for cholesterol determination. Analytical Methods, 4, 3225-3231. DOI:10.1039/c2ay25826a.10.1039/c2ay25826aSearch in Google Scholar
Karyakin, A. A. (2001). Prussian blue and its analogues: Elec- trochemistry and analytical applications. Electroanalysis, 13,813-819. DOI: 10.1002/1521-4109(200106)13:10<813::AID- ELAN813>3.0.CO;2-Z.Search in Google Scholar
Kirwan, S. M., Rocchitta, G., McMahon, C. P., Craig, J. D., Killoran, S. J., O’Brien, K. B., Serra, P. A., Lowry, J. P., & O’Neill, R. D. (2007). Modifications of poly(o- phenylenediamine) permselective layer on Pt-Ir for biosensor application in neurochemical monitoring. Sensors, 7, 420-437. DOI: 10.3390/s7040420.10.3390/s7040420Search in Google Scholar
Krasnansky, R., Yamamura, S., Thomas, J. K., & Dellaguardia, R. (1991). Photoproduction of gold colloids and films. Lang- muir, 7, 2881-2886. DOI: 10.1021/la00060a003.10.1021/la00060a003Search in Google Scholar
Krikstolaityte, V., Barrantes, A., Ramanavicius, A., Arnebrant, T., Shleev, S., & Ruzgas, T. (2014). Bioelectrocat- alytic reduction of oxygen at gold nanoparticles modified with laccase. Bioelectrochemistry, 95, 1-6. DOI: 10.1016/j. bioelechem.2013.09.004.Search in Google Scholar
Lim, S. H., Wei, J., Lin, J., Li, Q., & You, J. K. (2005). A glucose biosensor based on electrodeposition of palladium nanoparti- cles and glucose oxidase onto Nafion-solubilized carbon nan- otube electrode. Biosensors and Bioelectronics, 20, 2341-2346. DOI: 10.1016/j.bios.2004.08.005.10.1016/j.bios.2004.08.005Search in Google Scholar PubMed
Lima, F. H. B., Profeti, D., Chatenet, M., Riello, D., Ti- cianelli, E. A., & Gonzalez, E. R. (2010). Electro-oxidation of ethanol on Rh/Pt and Ru/Rh/Pt sub-monolayers de- posited on Au/C nanoparticles. Electrocatalysis, 1, 72-82. DOI: 10.1007/s12678-010-0014-1.10.1007/s12678-010-0014-1Search in Google Scholar
Liu, S., & Ju, H. (2003). Electrocatalysis via direct electrochemistry of myoglobin immobilized on colloidal gold nanopar- ticles. Electroanalysis, 15, 1488-1493. DOI: 10.1002/elan.200302722.10.1002/elan.200302722Search in Google Scholar
Liu, S., Leech, D., & Ju, H. (2003). Application of colloidal gold in protein immobilization, electron transfer, and biosensing. Analytical Letters, 36, 1-19. DOI: 10.1081/al-120017740.10.1081/AL-120017740Search in Google Scholar
Liu, G., & Lin, Y. (2006). Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injec- tion/amperometric detection of organophosphate pesticides and nerve agents. Analytical Chemistry, 78, 835-843. DOI:10.1021/ac051559q.10.1021/ac051559qSearch in Google Scholar
Liu, A. R., & Huang, S. M. (2012). A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized onto platinum nanoparticles modified graphene electrode. Science China - Physics, Mechanics & Astronomy, 55, 1163-1167. DOI: 10.1007/s11433-012-4782-x.10.1007/s11433-012-4782-xSearch in Google Scholar
Luo, X., Morrin, A., Killard, A. J., & Smyth, M. R. (2006). Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis, 18, 319-326. DOI: 10.1002/elan.200503415.10.1002/elan.200503415Search in Google Scholar
Ma, Y., Di, J., Yan, X., Zhao, M., Lu, Z., & Tu, Y. (2009). Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application. Biosensors and Bioelectronics, 24, 1480-1483. DOI: 10.1016/j.bios.2008.10.007.10.1016/j.bios.2008.10.007Search in Google Scholar
Mano, N., & Edembe, L. (2013). Bilirubin oxidases in bioelec- trochemistry: Features and recent findings. Biosensors and Bioelectronics, 50, 478-485. DOI: 10.1016/j.bios.2013.07.014. Mao, S., Long, Y., Li, W., Tu, Y., & Deng, A. (2013). Core-shell structured Ag@C for direct electrochemistry and hydrogen peroxide biosensor applications. Biosensors and Bioelectronics, 48, 258-262. DOI: 10.1016/j.bios.2013.04.026.10.1016/j.bios.2013.04.026Search in Google Scholar
Marinov, I., Ivanov, Y., Gabrovska, K., & Godjevargova, T. (2010). Amperometric acetylthiocholine sensor based on acetylcholinesterase immobilized on nanostructured polymer membrane containing gold nanoparticles. Journal of Molec- ular Catalysis B: Enzymatic, 62, 67-75. DOI: 10.1016/j. molcatb.2009.09.005.Search in Google Scholar
Martorell, D., Céspedes, F., Martínez-F`abregas, E., & Alegret, S. (1994). Amperometric determination of pesticides using a biosensor based on a polishable graphite-epoxy biocomposite. Analytica Chimica Acta, 290, 343-348. DOI: 10.1016/0003-2670(94)80121-5.10.1016/0003-2670(94)80121-5Search in Google Scholar
Marty, J. L., Mionetto, N., & Rouillon, R. (1992). Entrapped enzymes in photocrosslinkable gel for enzyme electrodes. An- alytical Letters, 25, 1389-1398. DOI: 10.1080/00032719208017123.10.1080/00032719208017123Search in Google Scholar
Marty, J. L., Mionetto, N., Lacorte, S., & Barceló, D. (1995). Validation of an enzymatic biosensor with various liquid chromatographic techniques for determining organophos- phorus pesticides and carbaryl in freeze-dried waters. An- alytica Chimica Acta, 311, 265-271. DOI: 10.1016/0003-2670(94)00617-u.10.1016/0003-2670(94)00617-USearch in Google Scholar
Mizsei, J., Sipilä, P., & Lantto, V. (1998). Structural stud- ies of sputtered noble metal catalysts on oxide surfaces. Sensors and Actuators B: Chemical, 47, 139-144. DOI: 10.1016/s0925-4005(98)00015-x.10.1016/S0925-4005(98)00015-XSearch in Google Scholar
Mizukoshi, Y., Okitsu, K., Maeda, Y., Yamamoto, T. A., Os- hima, R., & Nagata, Y. (1997). Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solu- tion. The Journal of Physical Chemistry B, 101, 7033-7037. DOI: 10.1021/jp9638090.10.1021/jp9638090Search in Google Scholar
Montornes, J. M., Vreeke, M. S., & Katakis, I. (2008). Glu- cose biosensors. In P. N. Bartlett (Ed.), Bioelectrochem- istry: Fundamentals, experimental techniques and applica- tions (Chapter 5, pp. 199-217). Chichester, UK: Wiley. DOI:10.1002/9780470753842.ch5.10.1002/9780470753842.ch5Search in Google Scholar
Nagaiah, T. C., Schäfer, D., Schuhmann, W., & Dimcheva, N. (2013). Electrochemically deposited Pd-Pt and Pd- Au codeposits on graphite electrodes for electrocatalytic H2 O2 reduction. Analytical Chemistry, 85, 7897-7903. DOI:10.1021/ac401317y.10.1021/ac401317ySearch in Google Scholar
Olivia, H., Sarada, B. V., Honda, K., & Fujishima, A. (2004). Continuous glucose monitoring using enzyme-immobilized platinized diamond microfiber electrodes. Electrochimica Acta, 49, 2069-2076. DOI: 10.1016/j.electacta.2003.10.026.10.1016/j.electacta.2003.10.026Search in Google Scholar
Palanisamy, S., Karuppiah, C., & Chen, S. M. (2014). Direct electrochemistry and electrocatalysis of glucose ox- idase immobilized on reduced graphene oxide and sil- ver nanoparticles nanocomposite modified electrode. Col- loids and Surfaces B: Biointerfaces, 114, 164-169. DOI: 10.1016/j.colsurfb.2013.10.006.10.1016/j.colsurfb.2013.10.006Search in Google Scholar
Pandey, P. C., Upadhyay, S., Pathak, H. C., Pandey, C. M. D., & Tiwari, I. (2000). Acetylthiocholine/acetylcholine and thiocholine/choline electrochemical biosensors/sensors based on an organically modified sol-gel glass enzyme reactor and graphite paste electrode. Sensors and Actuators, B: Chemi- cal, 62, 109-116. DOI: 10.1016/s0925-4005(99)00367-6.10.1016/S0925-4005(99)00367-6Search in Google Scholar
Pedrosa, V. A., Caetano, J., Machado, S. A. S., Freire, R. S., & Bertotti, M. (2007). Acetylcholinesterase immobilization on 3-mercaptopropionic acid self assembled monolayer for deter- mination of pesticides. Electroanalysis, 19, 1415-1420. DOI:10.1002/elan.200703872.10.1002/elan.200703872Search in Google Scholar
Pingarrón, J. M., Yán´ez-Seden´o, P., & González-Cortés, A. (2008). Gold nanoparticle-based electrochemical biosensors. Electrochimica Acta, 53, 5848-5866. DOI: 10.1016/j. electacta.2008.03.005.Search in Google Scholar
Pita, M., Gutierrez-Sanchez, C., Toscano, M. D., Shleev, S., & De Lacey, A. L. (2013). Oxygen biosensor based on bilirubin oxidase immobilized on a nanostructured gold electrode. Bio- electrochemistry, 94, 69-74. DOI: 10.1016/j.bioelechem.2013.07.001.10.1016/j.bioelechem.2013.07.001Search in Google Scholar PubMed
Plyasova, L. M., Molina, I. Y., Gavrilov, A. N., Cherepanova, S. V., Cherstiouk, O. V., Rudina, N. A., Savinova, E. R., & Tsir- lina, G. A. (2006). Electrodeposited platinum revisited: Tun- ing nanostructure via the deposition potential. Electrochimica Acta, 51, 4477-4488. DOI: 10.1016/j.electacta.2005.12.027.10.1016/j.electacta.2005.12.027Search in Google Scholar
Qiaocui, S., Tuzhi, P., Yunu, Z., & Yang, C. F. (2005). An electrochemical biosensor with cholesterol oxidase/sol-gel film on a nanoplatinum/carbon nanotube electrode. Electroanalysis, 17, 857-861. DOI: 10.1002/elan.200403162.10.1002/elan.200403162Search in Google Scholar
Quinn, B. M., Dekker, C., & Lemay, S. G. (2005). Electrode position of noble metal nanoparticles on carbon nanotubes. Journal of the American Chemical Society, 127, 6146-6147. DOI: 10.1021/ja0508828.10.1021/ja0508828Search in Google Scholar PubMed
Ragupathy, D., Gopalan, A. I., & Lee, K. P. (2009). Synergistic contributions of multiwall carbon nanotubes and gold nanoparticles in a chitosan-ionic liquid matrix towards improved performance for a glucose sensor. Electrochemistry Communications, 11, 397-401. DOI: 10.1016/j.elecom.2008.11.048.10.1016/j.elecom.2008.11.048Search in Google Scholar
Rahman, M. A., Noh, H. B., & Shim, Y. B. (2008). Direct electrochemistry of laccase immobilized on Au nanoparticles encapsulated-dendrimer bonded conducting polymer: Application for a catechin sensor. Analytical Chemistry, 80, 8020-8027. DOI: 10.1021/ac801033s.10.1021/ac801033sSearch in Google Scholar PubMed
Ramos, S. G., Moreno, M. S., Andreasen, G. A., & Triaca, W. E. (2010). Facetted platinum electrocatalysts for electrochemical energy converters. International Journal of Hydrogen Energy, 35, 5925-5929. DOI: 10.1016/j.ijhydene.2009.12.106.10.1016/j.ijhydene.2009.12.106Search in Google Scholar
Sau, T. K., & Rogach, A. L. (2012). Colloidal synthesis of noble metal nanoparticles of complex morphologies. In T. K. Sau, & A. L. Rogach (Eds.), Complex-shaped metal nanoparticles: Bottom-up syntheses and applications (Chapter 1, pp. 7-90). Weinheim, Germany: Wiley-VCH.10.1002/9783527652570.ch1.Search in Google Scholar
Sekol, R. C., Li, X., Cohen, P., Doubek, G., Carmo, M., & Taylor, A. D. (2013). Silver palladium core-shell electrocatalyst supported on MWNTs for ORR in alkaline media. Applied Catalysis B: Environmental, 138-139, 285-293. DOI:10.1016/j.apcatb.2013.02.054.10.1016/j.apcatb.2013.02.054Search in Google Scholar
Shao, M., Odell, J. H., Choi, S. I., & Xia, Y. (2013). Electrochemical surface area measurements of platinum- and palladium-based nanoparticles. Electrochemistry Communications, 31, 46-48. DOI: 10.1016/j.elecom.2013.03.011.10.1016/j.elecom.2013.03.011Search in Google Scholar
Shulga, O., & Kirchhoff, J. R. (2007). An acetylcholinesterase enzyme electrode stabilized by an electrodeposited gold nanoparticle layer. Electrochemistry Communications, 9,935-940. DOI: 10.1016/j.elecom.2006.11.021.10.1016/j.elecom.2006.11.021Search in Google Scholar
Singh, M., Verma, N., Garg, A. K., & Redhu, N. (2008). Urea biosensors. Sensors and Actuators B: Chemical, 134, 345-351. DOI: 10.1016/j.snb.2008.04.025.10.1016/j.snb.2008.04.025Search in Google Scholar
Somerset, V., Baker, P., & Iwuoha, E. (2009). Mercaptobenzothiazole-on-gold organic phase biosensor systems: 1. Enhanced organosphosphate pesticide determination. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 44, 164-178. DOI: 10.1080/03601230802599092.10.1080/03601230802599092Search in Google Scholar PubMed
Stoytcheva, M., Sharkova, V., & Magnin, J. P. (1998). Electrochemical approach in studying the inactivation of immobilized acetylcholinesterase by arsenate(III). Electroanalysis, 10, 994-998. DOI: 10.1002/(SICI)1521-4109(199810)10:14 <994::AID-ELAN994>3.0.CO;2-0.Search in Google Scholar
Tang, J., Tian, X. C., Pang, W. H., Liu, Y. Q., & Lin, J. H. (2012). Codeposition of AuPd bimetallic nanoparticles on to ITO and their electrocatalytic properties for ethanol oxidation. Electrochimica Acta, 81, 8-13. DOI:10.1016/j.electacta.2012.07.048.10.1016/j.electacta.2012.07.048Search in Google Scholar
Terauchi, S., Koshizaki, N., & Umehara, H. (1995). Fabrication of Au nanoparticles by radio-frequency magnetron sputtering. Nanostructured Materials, 5, 71-78. DOI: 10.1016/0965-9773(95)00011-3.10.1016/0965-9773(95)00011-3Search in Google Scholar
Tiwari, A., Aryal, S., Pilla, S., & Gong, S. (2009). An amper- ometric urea biosensor based on covalently immobilized ure- ase on an electrode made of hyperbranched polyester func- tionalized gold nanoparticles. Talanta, 78, 1401-1407. DOI: 10.1016/j.talanta.2009.02.038.10.1016/j.talanta.2009.02.038Search in Google Scholar PubMed
Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55-75. DOI: 10.1039/df9511100055.10.1039/df9511100055Search in Google Scholar
Turkevich, J., Stevenson, P. C., & Hillier, J. (1953). The for- mation of colloidal gold. The Journal of Physical Chemistry, 57, 670-673. DOI: 10.1021/j150508a015.10.1021/j150508a015Search in Google Scholar
Turkevich, J., & Kim, G. (1970). Palladium: Preparation and catalytic properties of particles of uniform size. Science, 169, 873-879.10.1126/science.169.3948.873Search in Google Scholar PubMed
Velichkova, Y., Ivanov, Y., Marinov, I., Ramesh, R., Kamini, N. R., Dimcheva, N., Horozova, E., & Godjevargova, T. (2011). Amperometric electrode for determination of urea us- ing electrodeposited rhodium and immobilized urease. Jour- nal of Molecular Catalysis B: Enzymatic, 69, 168-175. DOI:10.1016/j.molcatb.2011.01.015.10.1016/j.molcatb.2011.01.015Search in Google Scholar
Wang, L., Mao, W., Ni, D., Di, J., Wu, Y., & Tu, Y. (2008). Di- rect electrodeposition of gold nanoparticles onto indium/tin oxide film coated glass and its application for electrochemical biosensor. Electrochemistry Communications, 10, 673-676. DOI: 10.1016/j.elecom.2008.02.009.10.1016/j.elecom.2008.02.009Search in Google Scholar
Wang, J., Wang, L., Di, J., & Tu, Y. (2009). Electrodeposition of gold nanoparticles on indium/tin oxide electrode for fabri- cation of a disposable hydrogen peroxide biosensor. Talanta, 77, 1454-1459. DOI: 10.1016/j.talanta.2008.09.034.10.1016/j.talanta.2008.09.034Search in Google Scholar PubMed
Whyman, R. (1996). Gold nanoparticles: A renaissance in gold chemistry. Gold Bulletin, 29, 11-15. DOI: 10.1007/bf03214736.10.1007/BF03214736Search in Google Scholar
Wilson, R. (2008). The use of gold nanoparticles in diagnos- tics and detection. Chemical Society Reviews, 37, 2028-2045. DOI: 10.1039/b712179m.10.1039/b712179mSearch in Google Scholar PubMed
Xu, G., Adeloju, S. B., Wu, Y., & Zhang, X. (2012). Modification of polypyrrole nanowires array with platinum nanopar- ticles and glucose oxidase for fabrication of a novel glu- cose biosensor. Analytica Chimica Acta, 755, 100-107. DOI:10.1016/j.aca.2012.09.037.10.1016/j.aca.2012.09.037Search in Google Scholar PubMed
Xue, B., Chen, P., Hong, Q., Lin, J., & Tan, K. L. (2001). Growth of Pd, Pt, Ag and Au nanoparticles on carbon nan- otubes. Journal of Materials Chemistry, 11, 2378-2381. DOI:10.1039/b100618p.10.1039/b100618pSearch in Google Scholar
Yang, M., Qu, F., Lu, Y., He, Y., Shen, G., & Yu, R. (2006). Platinum nanowire nanoelectrode array for the fab- rication of biosensors. Biomaterials, 27, 5944-5950. DOI:10.1016/j.biomaterials.2006.08.014.10.1016/j.biomaterials.2006.08.014Search in Google Scholar PubMed
Yu, Y., Chen, Z., He, S., Zhang, B., Li, X., & Yao, M. (2014).Direct electron transfer of glucose oxidase and biosens- ing for glucose based on PDDA-capped gold nanoparti- cle modified graphene/multi-walled carbon nanotubes elec- trode. Biosensors and Bioelectronics, 52, 147-152. DOI:10.1016/j.bios.2013.08.043.10.1016/j.bios.2013.08.043Search in Google Scholar PubMed
Zhang, X., Cao, Y., Yu, S., Yang, F., & Xi, P. (2013). An electrochemical biosensor for ascorbic acid based on carbon- supported PdNi nanoparticles. Biosensors and Bioelectron- ics, 44, 183-190. DOI: 10.1016/j.bios.2013.01.020.10.1016/j.bios.2013.01.020Search in Google Scholar PubMed
Zhao, S., Zhang, K., Sun, Y., & Sun, C. (2006). Hemoglobin/colloidal silver nanoparticles immobilized in titania sol-gel film on glassy carbon electrode: Direct electrochemistry and electrocatalysis. Bioelectrochemistry, 69, 10-15. DOI:10.1016/j.bioelechem.2005.09.004.10.1016/j.bioelechem.2005.09.004Search in Google Scholar PubMed
Zhao, K., Zhuang, S., Chang, Z., Songm, H., Dai, L., He, P., & Fang, Y. (2007). Amperometric glucose biosensor based on platinum nanoparticles combined aligned carbon nanotubes electrode. Electroanalysis, 19, 1069-1074. DOI:10.1002/elan.200603823.10.1002/elan.200603823Search in Google Scholar
Zhu, L., Xu, L., Tan, L., Tan, H., Yang, S., & Yao, S. (2013). Direct electrochemistry of cholesterol oxidase immobilized on gold nanoparticles-decorated multiwalled carbon nan- otubes and cholesterol sensing. Talanta, 106, 192-199. DOI:10.1016/j.talanta.2012.12.036. 10.1016/j.talanta.2012.12.036Search in Google Scholar PubMed
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Biosensors – Topical issue
- Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
- Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
- Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
- Application of nanomaterials in microbial-cell biosensor constructions
- Use of green fluorescent proteins for in vitro biosensing
- Biosensors based on molecular beacons
- DNA aptamer-based detection of prostate cancer
- Can glycoprofiling be helpful in detecting prostate cancer?
- Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
- Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
- Surface plasmon resonance application in prostate cancer biomarker research
- Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
- Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
- Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
- Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
- Whole-cell optical biosensor for mercury – operational conditions in saline water
- Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
- Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
- Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
- Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
- Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
- Can voltammetry distinguish glycan isomers?
Articles in the same Issue
- Biosensors – Topical issue
- Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds
- Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review
- Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells
- Application of nanomaterials in microbial-cell biosensor constructions
- Use of green fluorescent proteins for in vitro biosensing
- Biosensors based on molecular beacons
- DNA aptamer-based detection of prostate cancer
- Can glycoprofiling be helpful in detecting prostate cancer?
- Graphene as signal amplifier for preparation of ultrasensitive electrochemical biosensors
- Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles
- Surface plasmon resonance application in prostate cancer biomarker research
- Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E
- Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer
- Detection of hydrogen peroxide and glucose by enzyme product precipitation on sensor surface
- Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor
- Whole-cell optical biosensor for mercury – operational conditions in saline water
- Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization
- Detection of short oligonucleotide sequences of hepatitis B virus using electrochemical DNA hybridisation biosensor
- Aptamer-based detection of thrombin by acoustic method using DNA tetrahedrons as immobilisation platform
- Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye
- Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode
- Can voltammetry distinguish glycan isomers?