Home Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
Article
Licensed
Unlicensed Requires Authentication

Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment

  • Tomáš Mackuľak EMAIL logo , Petra Olejníková , Josef Prousek and Ľubomír Švorc
Published/Copyright: September 28, 2011
Become an author with De Gruyter Brill

Abstract

Monitoring the enforcement of an EU-wide ban of nitrofuran antibiotics in the food production chain is a challenging task, given the nature of nitrofuran compounds. The original and modified Fenton reactions are advanced oxidation processes that can eliminate the toxicity of nitrofurans. 2-(5-Nitrofuryl)acrylic acid (I) was degraded as a model compound by the original Fenton reaction with ferrous sulphate, by Mohr’s salt at pH 3 and 7, and finally by advanced Fenton process (AFP) (Fe0/H2O2/H2SO4). In addition, the growth inhibition of Escherichia coli, a G− bacterium, was tested both before and after AFP treatment. The results showed that a small degradation efficiency of this treatment process led to the toxicity changes and that the toxicity of I after AFP treatment process decreased. It seems that the treatment of polluted water using the Fenton reaction and its modifications would be a suitable method for degradation of nitrofuran derivatives in polluted water.

[1] Bartel, L. C., Montalto de Mecca, M., & Castro, J. A. (2009). Nitroreductive metabolic activation of some carcinogenic nitro heterocyclic food contaminants in rat mammary tissue cellular fractions. Food and Chemical Toxicology, 47, 140–144. DOI: 10.1016/j.fct.2008.09.069. http://dx.doi.org/10.1016/j.fct.2008.09.06910.1016/j.fct.2008.09.069Search in Google Scholar PubMed

[2] Chen, J., Xiu, Z., Lowry, G. V., & Alvarez, P. J. J. (2011). Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Research, 45, 1995–2001. DOI: 10.1016/j.watres.2010.11.036. http://dx.doi.org/10.1016/j.watres.2010.11.03610.1016/j.watres.2010.11.036Search in Google Scholar PubMed

[3] Cooper, K. M., Mulder, P. P. J., van Rhijn, J. A., Kovacsics, L., McCracken, R. J., Young, P. B., & Kennedy, D. G. (2005). Depletion of four nitrofuran antibiotics and their tissuebound metabolites in porcine tissues and determination using LC-MS/MS and HPLC-UV. Food Additives & Contaminants, 22, 406–414. DOI: 10.1080/02652030512331385218. http://dx.doi.org/10.1080/0265203051233138521810.1080/02652030512331385218Search in Google Scholar PubMed

[4] Derco, J., Žgajnar Gotvajn, A., Zagorc-Končan, J., Almásiová, B., & Kassai, A. (2010). Pretreatment of landfill leachate by chemical oxidation processes. Chemical Papers, 64, 237–245. DOI: 10.2478/s11696-009-0116-5. http://dx.doi.org/10.2478/s11696-009-0116-510.2478/s11696-009-0116-5Search in Google Scholar

[5] Gomathi Devi, L., Girish Kumar, S., Anantha Raju, K. S., & Eraiah Rajashenkhar, K. (2010). Photo-Fenton and photo-Fenton-like processes for the degradation of methyl orange in aqueous medium: Influence of oxidation states of iron. Chemical Papers, 64, 378–385. DOI: 10.2478/s11696-010-0011-0. http://dx.doi.org/10.2478/s11696-010-0011-010.2478/s11696-010-0011-0Search in Google Scholar

[6] Himebaugh, R. R., & Smith, M. J. (1979). Semi-micro tube method for chemical oxygen demand. Analytical Chemistry, 51, 1085–1087. DOI: 10.1021/ac50043a072. http://dx.doi.org/10.1021/ac50043a07210.1021/ac50043a072Search in Google Scholar

[7] Jantová, S., Greif, G., Špirková, K., Stankovský, Š., & Oravcová, M. (2000). Antibacterial effects of trisubstituted quinazoline derivatives. Folia Microbiologica, 45, 133–137. http://dx.doi.org/10.1007/BF0281741110.1007/BF02817411Search in Google Scholar PubMed

[8] Klíma, J., Prousek, J., Ludvík, J., & Volke, J. (1984). Electrochemical investigation of radical-anion reactions of 5-nitro-2-furfuryl derivatives. Collection of Czechoslovak Chemical Communications, 49, 1627–1634. DOI: 10.1135/cccc19841627. http://dx.doi.org/10.1135/cccc1984162710.1135/cccc19841627Search in Google Scholar

[9] Kirkland, D., Reeve, L., Gatehouse, D., & Vanparys, P. (2011). A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutation Research, 721, 27–73. DOI: 10.1016/j.mrgentox.2010.12.015. 10.1016/j.mrgentox.2010.12.015Search in Google Scholar PubMed

[10] Leston, S., Nunes, M., Viegas, I., Lemos, M. F. L., Freitas, A., Barbosa, J., Ramos, F., & Pardal, M. A. (2011). The effects of the nitrofuran furaltadone on Ulva lactuca. Chemosphere, 82, 1010–1016. DOI: 10.1016/j.chemosphere.2010.10.067. http://dx.doi.org/10.1016/j.chemosphere.2010.10.06710.1016/j.chemosphere.2010.10.067Search in Google Scholar PubMed

[11] Mackuľak, T., Prousek, J., & Švorc, Ľ. (2011). Degradation of atrazine by Fenton and modified Fenton reactions. Monatshefte für Chemie, 142, 561–567. DOI: 10.1007/s00706-011-0504-8. http://dx.doi.org/10.1007/s00706-011-0504-810.1007/s00706-011-0504-8Search in Google Scholar

[12] McCracken, R. J., & Kennedy, D. G. (1997). Determination of the furazolidone metabolite, 3-amino-2-oxazolidinone, in porcine tissues using liquid chromatography-thermospray mass spectrometry and the occurrence of residues in pigs produced in Northern Ireland. Journal of Chromatography B, 691, 87–94. DOI: 10.1016/S0378-4347(96)00448-3. http://dx.doi.org/10.1016/S0378-4347(96)00448-310.1016/S0378-4347(96)00448-3Search in Google Scholar

[13] Prousek, J. (2007). Fenton chemistry in biology and medicine. Pure and Applied Chemistry, 79, 2325–2338. DOI: 10.1351/pac200779122325. http://dx.doi.org/10.1351/pac20077912232510.1351/pac200779122325Search in Google Scholar

[14] Prousek, J. (1980). Electron transfer processes. Reactions of 5-nitrofuryl derivatives going by anionradical mechanism. Collection of Czechoslovak Chemical Communications, 45, 3347–3353. Search in Google Scholar

[15] Prousek, J., Palacková, E., Priesolová, S., Marková, L., & Alevová, A. (2007). Fenton- and Fenton-like AOPs for wastewater treatment: From laboratory-to-plant-scale application. Separation Science and Technology, 42, 1505–1520. DOI: 10.1080/01496390701290151. http://dx.doi.org/10.1080/0149639070129015110.1080/01496390701290151Search in Google Scholar

[16] Prousek, J., & Priesolová, S. (2002). Practical utilization of zero-valent iron in Fenton reaction for treatment of coloured waste waters. Chemické Listy, 96, 893–896. (in Czech) Search in Google Scholar

[17] Radovnikovic, A., Moloney, M., Byrne, P., & Danaher, M. (2011). Detection of banned nitrofuran metabolites in animal plasma samples using UHPLC-MS/MS. Journal of Chro matography B, 879, 159–166. DOI: 10.1016/j.jchromb.2010.11.036. http://dx.doi.org/10.1016/j.jchromb.2010.11.03610.1016/j.jchromb.2010.11.036Search in Google Scholar PubMed

[18] Stiborová, M. (2002). Nitroaromatic compounds: Environmental pollutants with carcinogenic potential for humans. Chemické Listy, 96, 784–791. (in Czech) Search in Google Scholar

[19] Vieites, M., Otero, L., Santos, D., Olea-Azar, C., Norambuena, E., Aguirre, G., Cerecetto, H., González, M., Kemmerling, U., Morello, A., Maya, J. D., & Gambino, D. (2009). Platinum-based complexes of bioactive 3-(5-nitrofuryl)acroleine thiosemicarbazones showing anti-Trypanosoma cruzi activity. Journal of Inorganic Biochemistry, 103, 411–418. DOI: 10.1016/j.jinorgbio.2008.12.004. http://dx.doi.org/10.1016/j.jinorgbio.2008.12.00410.1016/j.jinorgbio.2008.12.004Search in Google Scholar PubMed

[20] Wang, Y., Gray, J. P., Mishin, V., Heck, D. E., Laskin, D. L., & Laskin, J. D. (2008). Role of cytochrome P450 reductase in nitrofurantoin-induced redox cycling and cytotoxicity. Free Radical Biology & Medicine, 44, 1169–1179. DOI: 10.1016/j.freeradbiomed.2007.12.013. http://dx.doi.org/10.1016/j.freeradbiomed.2007.12.01310.1016/j.freeradbiomed.2007.12.013Search in Google Scholar PubMed PubMed Central

Published Online: 2011-9-28
Published in Print: 2011-12-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Determination of four trace preservatives in street food by ionic liquid-based dispersive liquid-liquid micro-extraction
  2. Optimisation and validation of liquid chromatographic and partial least-squares-1 methods for simultaneous determination of enalapril maleate and nitrendipine in pharmaceutical preparations
  3. Chemiluminescence parameters of peroxynitrous acid in the presence of short-chain alcohols and Ru(bpy)32+
  4. Investigation of multi-layered silicate ceramics using laser ablation optical emission spectrometry, laser ablation inductively coupled plasma mass spectrometry, and electron microprobe analysis
  5. Simultaneous analysis of three catecholamines by a kinetic procedure: comparison of prediction performance of several different multivariate calibrations
  6. Enzymatic saccharification of cellulose in aqueous-ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate-DMSO media
  7. Statistical and evolutionary optimisation of operating conditions for enhanced production of fungal l-asparaginase
  8. Extraction of phytosterols from tall oil soap using selected organic solvents
  9. Dynamic simulations of waste water treatment plant operation
  10. Influence of recycling and temperature on the swelling ability of paper
  11. Zirconium(IV) 4-sulphophenylethyliminobismethylphosphonate as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidones under solvent-free conditions
  12. Toxicity reduction of 2-(5-nitrofuryl)acrylic acid following Fenton reaction treatment
  13. Synthesis and characterisation of alkaline earth-iron(III) double hydroxides
  14. Effect of cyclodextrins on pH-induced conformational transition of poly(methacrylic acid)
  15. Polyamine-substituted epoxy-grafted silica for aqueous metal recovery
  16. Helical silica nanotubes: Nanofabrication architecture, transfer of helix and chirality to silica nanotubes
  17. DFT calculations on the Friedel-Crafts benzylation of 1,4-dimethoxybenzene using ZnCl2 impregnated montmorillonite K10 — inversion of relative selectivities and reactivities of aryl halides
  18. Facile synthesis of 3-aryl-1-((4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl)isoquinolines
  19. Influence of trimethoxy-substituted positions on fluorescence of heteroaryl chalcone derivatives
  20. A simple and efficient one-pot synthesis of Hantzsch 1,4-dihydropyridines using silica sulphuric acid as a heterogeneous and reusable catalyst under solvent-free conditions
  21. Methylprednisolone release from agar-Carbomer-based hydrogel: a promising tool for local drug delivery
  22. 2-Alkylsulphanyl-4-pyridinecarbothioamides — inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0075-5/html
Scroll to top button