Startseite A procedure for the determination of dichloromethane and tetrachloroethene in water using pervaporation and gas chromatography
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A procedure for the determination of dichloromethane and tetrachloroethene in water using pervaporation and gas chromatography

  • Irena Rutkiewicz EMAIL logo , Wojciech Kujawski und Jacek Namieśnik
Veröffentlicht/Copyright: 23. Juli 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the present study, pervaporation was applied to the determination of tetrachloroethene (PCE) and dichloromethane (DCM) in liquid samples. PCE is the most commonly used solvent in drycleaning processes. PCE belongs to group 2A of carcinogens (probably carcinogenic to humans) according to the classification of the International Agency for Research on Cancer (IARC). DCM is also widely used as an industrial solvent for the purification and isolation of intermediates or products. DCM is classified as a “possible” human carcinogen by the IARC. The aim of this study was to evaluate a new procedure for the determination of DCM and PCE in liquid samples based on the pervaporative removal of DCM and PCE from liquid samples as an analyte isolation/enrichment technique, followed by a direct aqueous injection of the extracts onto the column of a gas chromatograph equipped with an electron capture detector (DAI-GC-ECD). The basic parameters of the new PV-DAI-GC-ECD procedure were evaluated.

[1] Ahn, H., Jeong, D., Jeong, H.-K., & Lee, Y. (2009). Pervaporation characteristics of trichlorinated organic compounds through Silicalite-1 zeolite membrane. Desalination, 245, 754–762. DOI: 10.1016/j.desal.2009.02.048. http://dx.doi.org/10.1016/j.desal.2009.02.04810.1016/j.desal.2009.02.048Suche in Google Scholar

[2] Ahn, H., & Lee, Y. (2006). Pervaporation of dichlororinated organic compounds through silicalite-1 zeolite membrane. Journal Membrane Science, 279, 459–465. DOI: 10.1016/j.memsci.2005.12.060. http://dx.doi.org/10.1016/j.memsci.2005.12.06010.1016/j.memsci.2005.12.060Suche in Google Scholar

[3] Chang, B.-J., Chang, Y.-H., Kim, D.-K., Kim, J.-H., & Lee, S.-B. (2005). New copolyimide membranes for the pervaporation of trichloroethylene from water. Journal of Membrane Science, 248, 99–107. DOI: 10.1016/j.memsci.2004.10.002. http://dx.doi.org/10.1016/j.memsci.2004.10.00210.1016/j.memsci.2004.10.002Suche in Google Scholar

[4] Das, S., Banthia, A. K., & Adhikari, B. (2006). Removal of chlorinated volatile organic contaminants from water by pervaporation using a novel polyurethane urea-poly(methyl methacrylate) interpenetrating network membrane. Chemical Engineering Science, 61, 6454–6467. DOI: 10.1016/j.ces.2006.06.014. http://dx.doi.org/10.1016/j.ces.2006.06.01410.1016/j.ces.2006.06.014Suche in Google Scholar

[5] Demeestere, K., Dewulf, J., De Witte, B., & Van Langenhove, H. (2007). Sample preparation for the analysis of volatile organic compounds in air and water matrices. Journal of Chromatography A, 1153, 130–144. DOI: 10.1016/j.chroma.2007.01.012. http://dx.doi.org/10.1016/j.chroma.2007.01.01210.1016/j.chroma.2007.01.012Suche in Google Scholar PubMed

[6] Dutta, B. K., & Sikdar, S. K. (1999). Separation of volatile organic compounds from aqueous solutions by pervaporation using S-B-S block copolymer membranes. Environmental Science & Technology, 33, 1709–1716. DOI: 10.1021/es980689w. http://dx.doi.org/10.1021/es980689w10.1021/es980689wSuche in Google Scholar

[7] Furuki, K., Ukai, H., Okamoto, S., Takada, S., Kawai, T., Miyama, Y., Mitsuyoshi, K., Zhang, Z.-W., Higashikawa, K., & Ikeda, M. (2000). Monitoring of occupational exposure to tetrachloroethene by analysis for unmetabolized tetrachloroethene in blood and urine in comparison with urinalysis for trichloroacetic acid. International Archives of Occupational and Environmental Health, 73, 221–227. DOI: 10.1007/s004200050421. http://dx.doi.org/10.1007/s00420005042110.1007/s004200050421Suche in Google Scholar PubMed

[8] Ganapathi-Desai, S., & Sikdar, S. K. (2000). A polymer-ceramic composite membrane for recovering volatile organic compounds from wastewaters by pervaporation. Clean Products & Processes, 2, 140–148. http://dx.doi.org/10.1007/s10098000007410.1007/s100980000074Suche in Google Scholar

[9] Hellweg, S., Demou, E., Scheringer, M., McKone, T. E., & Hungerbühler, K. (2005). Confronting workplace exposure to chemicals with LCA: Examples of trichloroethylene in metal degreasing and dry cleaning. Environmental Science & Technology, 39, 7741–7748. DOI: 10.1021/es047944z. http://dx.doi.org/10.1021/es047944z10.1021/es047944zSuche in Google Scholar PubMed

[10] Huber, L. (2007). Validation and qualification in analytical laboratories (2nd ed.). New York, NY, USA: Informa Healthcare USA, Inc. 10.3109/9780849382680Suche in Google Scholar

[11] International Organization for Standardization (ISO) (1995). Guide to the expression of uncertainty in measurement (GUM). Geneva, Switzerland: ISO. Suche in Google Scholar

[12] Jakubowska, N., Kujawski, W., Polkowska, Ż., Konieczka, P., & Namieśnik, J. (2007a). Procedure of determination of volatile trihalomethanes in human urine with pervaporation and gas chromatography. International Journal of Environmental Analytical Chemistry, 87, 449–457. DOI: 10.1080/03067310601109249. http://dx.doi.org/10.1080/0306731060110924910.1080/03067310601109249Suche in Google Scholar

[13] Jakubowska, N., Polkowska, Ż., Kujawski, W., Konieczka, P., & Namieśnik, J. (2007b). comparison of three solvent-free techniques coupled with gas chromatography for determining trihalomethanes in urine samples. Analytical and Bioanalytical Chemistry, 388, 691–698. DOI: 10.1007/s00216-007-1259-2. http://dx.doi.org/10.1007/s00216-007-1259-210.1007/s00216-007-1259-2Suche in Google Scholar

[14] Jiang, X., Gu, J., Shen, Y., Wang, S., & Tian, X. (2011). New fluorinated siloxane-imide block copolymer membranes for application in organophilic pervaporation. Desalination, 265, 74–80. DOI: 10.1016/j.desal.2010.07.034. http://dx.doi.org/10.1016/j.desal.2010.07.03410.1016/j.desal.2010.07.034Suche in Google Scholar

[15] Kujawski, W. (2000a). Application of pervaporation and vapor permeation in environmental protection. Polish Journal of Environmental Studies, 9, 13–26. Suche in Google Scholar

[16] Kujawski, W. (2000b). Pervaporative removal of organics from water using hydrophobic membranes. Binary mixtures. Separation Science and Technology, 35, 89–108. DOI: 10.1081/SS-100100145. http://dx.doi.org/10.1081/SS-10010014510.1081/SS-100100145Suche in Google Scholar

[17] Liang, L., Dickson, J. M., Jiang, J., & Brook, M. A. (2004). Effect of low flow rate on pervaporation of 1,2-dichloroethane with novel polydimethylsiloxane composite membranes. Journal of Membrane Science, 231, 71–79. DOI: 10.1016/j. memsci.2003.10.038. http://dx.doi.org/10.1016/j.memsci.2003.10.03810.1016/j.memsci.2003.10.038Suche in Google Scholar

[18] McLean, D., Pearce, N., Langseth, H., Jäppinen, P., Szadkowska-Stanczyk, I., Persson, B., Wild, P., Kishi, R., Lynge, E., Henneberger, P., Sala, M., Teschke, K., Kauppinen, T., Colin, D., Kogevinas, M., & Boffetta, P. (2006). Cancer mortality in workers exposed to organochlorine compounds in the pulp and paper industry: An international collaborative study. Environmental Health Perspectives, 114, 1007–1012. DOI: 10.1289/ehp.8588. http://dx.doi.org/10.1289/ehp.858810.1289/ehp.8588Suche in Google Scholar

[19] Mundt, K. A., Birk, T., & Burch, M. T. (2003). Critical review of the epidemiological literature on occupational exposure to perchloroethylene and cancer. International Archives of Occupational and Environmental Health, 76, 473–491. DOI: 10.1007/s00420-003-0457-2. http://dx.doi.org/10.1007/s00420-003-0457-210.1007/s00420-003-0457-2Suche in Google Scholar

[20] Paaso, N., Peuravuori, J., & Pihlaja, K. (2000). Extraction efficiency of chloroethenes from contaminated dry cleaner’s sludge with three different methods. Waste Management, 20, 69–74. DOI: 10.1016/S0956-053X(99)00299-8. http://dx.doi.org/10.1016/S0956-053X(99)00299-810.1016/S0956-053X(99)00299-8Suche in Google Scholar

[21] Peng, M., Vane, L. M., & Liu, S. X. (2003). Recent advances in VOCs removal from water by pervaporation. Journal of Hazardous Materials, B98, 69–90. DOI: 10.1016/S0304-3894(02)00360-6. http://dx.doi.org/10.1016/S0304-3894(02)00360-610.1016/S0304-3894(02)00360-6Suche in Google Scholar

[22] Perrin, M. C., Opler, M. G., Harlap, S., Harkavy-Friedman, J., Kleinhaus, K., Nahon, D., Fennig, S., Susser, E. S., & Malaspina, D. (2007). Tetrachloroethylene exposure and risk of schizophrenie: Offspring of dry cleaners in a population birth cohort, preliminary findings. Schizophrenia Research, 90, 251–254. DOI: 10.1016/j.schres.2006.09.024. http://dx.doi.org/10.1016/j.schres.2006.09.02410.1016/j.schres.2006.09.024Suche in Google Scholar PubMed PubMed Central

[23] Polkowska, Ż, Kozłowska, K., Mazerska, Z., Górecki, T., & Namieśnik, J. (2006). Volatile organohalogen compounds in human urine: The effect of environmental exposure. Chemosphere, 62, 626–640. DOI: 10.1016/j.chemosphere.2005.05. 036. http://dx.doi.org/10.1016/j.chemosphere.2005.05.03610.1016/j.chemosphere.2005.05.036Suche in Google Scholar PubMed

[24] Prieto, A., Basauri, O., Rodil, R., Usobiaga, A., Fernández, L. A., Etxebarria, N., & Zuloaga, O. (2010). Stir-bar sorptive extraction: A view on method optimisation, novel applications, limitations and potential solutions. Journal of Chromatography A, 1217, 2642–2666. DOI: 10.1016/j.chroma. 2009.12.051. http://dx.doi.org/10.1016/j.chroma.2009.12.05110.1016/j.chroma.2009.12.051Suche in Google Scholar PubMed

[25] Rutkiewicz, I., Kujawski, W., & Namieśnik, J. (2010). Pervaporation of volatile organohalogen compounds through polydimethylsiloxane membrane. Desalination, 264, 160–164. DOI: 10.1016/j.desal.2010.07.020. http://dx.doi.org/10.1016/j.desal.2010.07.02010.1016/j.desal.2010.07.020Suche in Google Scholar

[26] Sae-Khow, O., & Mitra, S. (2010). Pervaporation in chemical analysis. Journal of Chromatography A, 1217, 2736–2746. DOI: 10.1016/j.chroma.2009.12.043. http://dx.doi.org/10.1016/j.chroma.2009.12.04310.1016/j.chroma.2009.12.043Suche in Google Scholar PubMed

[27] Smitha, B., Suhanya, D., Sridhar, S., & Ramakrishna, M. (2004). Separation of organic-organic mixtures by pervaporation—a review. Journal of Membrane Science, 241, 1–21. DOI: 10.1016/j.memsci.2004.03.042. http://dx.doi.org/10.1016/j.memsci.2004.03.04210.1016/j.memsci.2004.03.042Suche in Google Scholar

[28] Ukai, H., Inui, S., Takada, S., Dendo, J., Ogawa, J., Isobe, K., Ashida, T., Tamura, M., Tabuki, K., & Ikeda, M. (1997). Types of organic solvents used in small- to medium-scale industries in Japan; a nationwide field survey. International Archives of Occupational and Environmental Health, 70, 385–392. DOI: 10.1007/s004200050233. http://dx.doi.org/10.1007/s00420005023310.1007/s004200050233Suche in Google Scholar PubMed

Published Online: 2011-7-23
Published in Print: 2011-10-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. 5th conference on membrane science and technology PERMEA 2010
  2. A procedure for the determination of dichloromethane and tetrachloroethene in water using pervaporation and gas chromatography
  3. Modeling of diffusive transport of benzoic acid through a liquid membrane
  4. Comparison of ceramic capillary membrane and ceramic tubular membrane with inserted static mixer
  5. New approach to regeneration of an ionic liquid containing solvent by molecular distillation
  6. Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane
  7. Determination of carbon in solidified sodium coolant using new ICP-OES methods
  8. Interpretation of interactions of halogenated hydrocarbons with modified silica adsorbent coated with 3-benzylketoimine group silane
  9. Adaptive nonlinear control of a continuous stirred tank reactor
  10. Anaerobic baffled reactor treatment of biodiesel-processing wastewater with high strength of methanol and glycerol: reactor performance and biogas production
  11. Analysis of streptolydigin degradation and conversion in cultural supernatants of Streptomyces lydicus AS 4.2501
  12. Spectroscopic and magnetic evidence of coordination properties of bioactive diethyl (pyridin-4-ylmethyl)phosphate ligand with chloride transition-metal ions
  13. Microstructure and properties of polyhydroxybutyrate-calcium phosphate cement composites
  14. Intercalation of basic amino acids into layered zirconium proline-N-methylphosphonate phosphate
  15. Effect of sol-gel preparation method on particle morphology in pure and nanocomposite PZT thin films
  16. Synthesis, spectroscopic and configurational study, and ab initio calculations of new diazaphospholanes
  17. Synthesis and in vitro antimicrobial activity of new 3-(2-morpholinoquinolin-3-yl) substituted acrylonitrile and propanenitrile derivatives
  18. Silicon-based thiourea-mediated and microwave-assisted thio-Michael addition under solvent-free reaction conditions
  19. One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst
  20. Comparison and optimisation of biodiesel production from Jatropha curcas oil using supercritical methyl acetate and methanol
  21. Determination of photoredox properties of individual kinetically labile complexes in equilibrium systems
  22. A halogenated coumarin from Ficus krishnae
  23. 4β-Isocyanopodophyllotoxins: valuable precursors for the synthesis of new podophyllotoxin analogues
  24. Environmentally benign one-pot synthesis and antimicrobial activity of 1-methyl-2,6-diarylpiperidin-4-ones
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0065-7/pdf
Button zum nach oben scrollen