Startseite New approach to regeneration of an ionic liquid containing solvent by molecular distillation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

New approach to regeneration of an ionic liquid containing solvent by molecular distillation

  • Marek Blahušiak EMAIL logo , Štefan Schlosser , Ján Cvengroš und Ján Marták
Veröffentlicht/Copyright: 23. Juli 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A promising new process for the regeneration of solvents with ionic liquid by molecular distillation has been proposed. The main advantage of this process compared with the classic stripping of acids with alkali solution is that the volatile organic acid is recovered with a yield of about 88 % in the form of free acid, not as its salt. Furthermore, improvement on the yield of the stripping can be assumed. The consumption of chemicals in stripping by molecular distillation is reduced.

[1] Blahušiak, M., Schlosser, Š., Cvengroš, J., & Marták, J. (2010). New approach to regeneration of the solvent with ionic liquid from membrane based solvent extraction. In 5th Conference on the Membrane Science and Technology Permea 2010, 4–8 September 2010. Tatranské Matliare, Slovakia: Slovak Society of Chemical Engineering. Suche in Google Scholar

[2] Cvengroš, J. (1990). Laboratory molecular evaporators. Chemický průmysl, 40/65(3), 135–140. (in Slovak) Suche in Google Scholar

[3] Cvengroš, J., Lutišan, J., & Micov, M. (2000). Feed temperature influence on the efficiency of a molecular evaporator. Chemical Engineering Journal, 78, 61–67. DOI: 10.1016/S1385-8947(99)00159-X. http://dx.doi.org/10.1016/S1385-8947(99)00159-X10.1016/S1385-8947(99)00159-XSuche in Google Scholar

[4] Kuhlmann, E., Haumann, M., Jess, A., Seeberger, A., & Wasserscheid, P. (2009). Ionic liquids in refinery desulfurization: Comparison between biphasic and supported ionic liquid phase suspension processes. ChemSusChem, 2, 969–977. doi: 10.1002/cssc.200900142. http://dx.doi.org/10.1002/cssc.20090014210.1002/cssc.200900142Suche in Google Scholar PubMed

[5] Marták, J., & Schlosser, Š. (2008). Liquid-liquid equilibria of butyric acid for solvents containing a phosphonium ionic liquid. Chemical Papers, 62, 42–50. DOI: 10.2478/s11696-007-0077-5. http://dx.doi.org/10.2478/s11696-007-0077-510.2478/s11696-007-0077-5Suche in Google Scholar

[6] Marták, J., & Schlosser, Š. (2007). Extraction of lactic acid by phosphonium ionic liquids. Separation and Purification Technology, 57, 483–494. doi: 10.1016/j.seppur.2006.09.013. http://dx.doi.org/10.1016/j.seppur.2006.09.01310.1016/j.seppur.2006.09.013Suche in Google Scholar

[7] Marták, J., & Schlosser, Š. (2006). Phosphonium ionic liquids as new, reactive extractants of lactic acid. Chemical Papers, 60, 395–398. DOI: 10.2478/s11696-006-0072-2. http://dx.doi.org/10.2478/s11696-006-0072-210.2478/s11696-006-0072-2Suche in Google Scholar

[8] Martins, P. F., Ito, V. M., Batistella, C. B., & Maciel, M. R. W. (2006). Free fatty acid separation from vegetable oil deodorizer distillate using molecular distillation process. Separation and Purification Technology, 48, 78–84. doi: 10.1016/j.seppur.2005.07.028. http://dx.doi.org/10.1016/j.seppur.2005.07.02810.1016/j.seppur.2005.07.028Suche in Google Scholar

[9] Matsumoto, M., Hasegawa, W., Kondo, K., Shimamura, T., & Tsuji, M. (2010). Application of supported ionic liquid membranes using a flat sheet and hollow fibers to lactic acid recovery. Desalination and Water Treatment, 14, 37–46. doi: 10.5004/dwt.2010.1009. http://dx.doi.org/10.5004/dwt.2010.100910.5004/dwt.2010.1009Suche in Google Scholar

[10] Schlosser, Š. (2009). Extractive separations in contactors with one and two immobilized L/L interfaces: Applications and perspectives. In E. Drioli, & L. Giorno (Eds.), Membrane operations. Innovative separations and transformations (pp. 513–542). Weinheim, Germany: Wiley-VCH. DOI: 10.1002/9783527626779.ch23. 10.1002/9783527626779.ch23Suche in Google Scholar

[11] Schlosser, Š., Kertész, R., & Marták, J. (2005). Recovery and separation of organic acids by membrane-based solvent extraction and pertraction: An overview with a case study on recovery of MPCA. Separation and Purification Technology, 41, 237–266. doi: 10.1016/j.seppur.2004.07.019. http://dx.doi.org/10.1016/j.seppur.2004.07.01910.1016/j.seppur.2004.07.019Suche in Google Scholar

[12] Schlosser, Š., & Marták, J. (2009). Separation of mixtures by pertraction or membrane based solvent extraction and new extractants. In R. Wódzki (Ed.), Membrane theory and practice (Vol. 3, pp. 123–152). Torun, Poland: Nicolaus Copernicus University. Available at: http://www.chem.uni.torun.pl/FIZ/ChemZM/MTiP/MTiPIII/MTiPIII.html Suche in Google Scholar

[13] van den Berg, C., Boon, F., Roelands, M., Bussmann, P., Goetheer, E., Verdoes, D., & van der Wielen, L. (2010). Techno-economic evaluation of solvent impregnated particles in a bioreactor. Separation and Purification Technology, 74, 318–328. doi: 10.1016/j.seppur.2010.06.022. http://dx.doi.org/10.1016/j.seppur.2010.06.02210.1016/j.seppur.2010.06.022Suche in Google Scholar

Published Online: 2011-7-23
Published in Print: 2011-10-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. 5th conference on membrane science and technology PERMEA 2010
  2. A procedure for the determination of dichloromethane and tetrachloroethene in water using pervaporation and gas chromatography
  3. Modeling of diffusive transport of benzoic acid through a liquid membrane
  4. Comparison of ceramic capillary membrane and ceramic tubular membrane with inserted static mixer
  5. New approach to regeneration of an ionic liquid containing solvent by molecular distillation
  6. Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane
  7. Determination of carbon in solidified sodium coolant using new ICP-OES methods
  8. Interpretation of interactions of halogenated hydrocarbons with modified silica adsorbent coated with 3-benzylketoimine group silane
  9. Adaptive nonlinear control of a continuous stirred tank reactor
  10. Anaerobic baffled reactor treatment of biodiesel-processing wastewater with high strength of methanol and glycerol: reactor performance and biogas production
  11. Analysis of streptolydigin degradation and conversion in cultural supernatants of Streptomyces lydicus AS 4.2501
  12. Spectroscopic and magnetic evidence of coordination properties of bioactive diethyl (pyridin-4-ylmethyl)phosphate ligand with chloride transition-metal ions
  13. Microstructure and properties of polyhydroxybutyrate-calcium phosphate cement composites
  14. Intercalation of basic amino acids into layered zirconium proline-N-methylphosphonate phosphate
  15. Effect of sol-gel preparation method on particle morphology in pure and nanocomposite PZT thin films
  16. Synthesis, spectroscopic and configurational study, and ab initio calculations of new diazaphospholanes
  17. Synthesis and in vitro antimicrobial activity of new 3-(2-morpholinoquinolin-3-yl) substituted acrylonitrile and propanenitrile derivatives
  18. Silicon-based thiourea-mediated and microwave-assisted thio-Michael addition under solvent-free reaction conditions
  19. One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst
  20. Comparison and optimisation of biodiesel production from Jatropha curcas oil using supercritical methyl acetate and methanol
  21. Determination of photoredox properties of individual kinetically labile complexes in equilibrium systems
  22. A halogenated coumarin from Ficus krishnae
  23. 4β-Isocyanopodophyllotoxins: valuable precursors for the synthesis of new podophyllotoxin analogues
  24. Environmentally benign one-pot synthesis and antimicrobial activity of 1-methyl-2,6-diarylpiperidin-4-ones
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0053-y/html
Button zum nach oben scrollen