Startseite Silicon-based thiourea-mediated and microwave-assisted thio-Michael addition under solvent-free reaction conditions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Silicon-based thiourea-mediated and microwave-assisted thio-Michael addition under solvent-free reaction conditions

  • Kamalakannan Prabakaran EMAIL logo , Machindra Gund , Tae Kim , Euh Jeong , Chae Oh , Fazlur-Rahman Nawaz Khan und Jong Jin
Veröffentlicht/Copyright: 23. Juli 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Silicon-based thiourea (SiliaBond® Thiourea) (Si-THU), a heterogeneous catalyst, has been applied to the highly selective C-S bond formation via Michael addition of thiols to α,β-unsaturated carbonyl compounds under solvent-free conditions at 55–60°C. The thio-Michael addition products were obtained in an excellent yield under optimised conditions. This methodology involving a metal-free as well as a metal scavenger catalyst has been found to be an alternative method for the thio-Michael addition reaction.

[1] Amini, M. M., Shaabani, A., & Bazgir, A. (2006). Tangstophosphoric acid (H3PW12O40): An efficient and eco-friendly catalyst for the one-pot synthesis of dihydropyrimidin-2(1H)-ones. Catalysis Communications, 7, 843–847. DOI: 10.1016/j.catcom.2006.02.027. http://dx.doi.org/10.1016/j.catcom.2006.02.02710.1016/j.catcom.2006.02.027Suche in Google Scholar

[2] Bandini, M., Cozzi, P. G., Giacomini, M., Melchiorre, P., Selva, S., & Umani-Ronchi, A. (2002). Sequential one-pot InBr3-catalyzed 1,4- then 1,2-nucleophilic addition to enones. Journal of Organic Chemistry, 67, 3700–3704. DOI: 10.1021/jo0163243. http://dx.doi.org/10.1021/jo016324310.1021/jo0163243Suche in Google Scholar

[3] Banerjee, S., Das, J., Alvarez, R. P., & Santra, S. (2010). Silica nanoparticles as a reusable catalyst: a straightforward route for the synthesis of thioethers, thioesters, vinyl thioethers and thio-Michael adducts under neutral reaction conditions. New Journal of Chemistry, 34, 302–306. DOI: 10.1039/B9NJ00399A. http://dx.doi.org/10.1039/b9nj00399a10.1039/B9NJ00399ASuche in Google Scholar

[4] Barahman, M. B., & Pershang, S. (2006). Michael addition of thiols to α,β-unsaturated carbonyl compounds under solventfree conditions. ARKIVOC, 2006(12), 130–137. 10.3998/ark.5550190.0007.c15Suche in Google Scholar

[5] Chu, C. M., Gao, S., Sastry, M. N. V., & Yao, C.-F. (2005). Iodine-catalyzed Michael addition of mercaptans to α,β-unsaturated ketones under solvent-free conditions. Tetrahedron Letters, 46, 4971–4974. DOI: 10.1016/j.tetlet.2005.05.099. http://dx.doi.org/10.1016/j.tetlet.2005.05.09910.1016/j.tetlet.2005.05.099Suche in Google Scholar

[6] Falck, J. R., Lai, J.-Y., Cho, S.-D., & Yu, J. (1999). Alkylthioether synthesis via imidazole mediated Mitsunobu condensation. Tetrahedron Letters, 40, 2903–2906. DOI: 10.1016/S0040-4039(99)00390-1. http://dx.doi.org/10.1016/S0040-4039(99)00390-110.1016/S0040-4039(99)00390-1Suche in Google Scholar

[7] Firouzabadi, H., Iranpoor, N., Jafarpour, M., & Ghaderi, A. (2006). ZrOCl2 · 8H2O/silica gel as a new efficient and a highly water-tolerant catalyst system for facile condensation of indoles with carbonyl compounds under solvent-free conditions. Journal of Molecular Catalysis A: Chemical, 253, 249–251. DOI: 10.1016/j.molcata.2006.03.043. http://dx.doi.org/10.1016/j.molcata.2006.03.04310.1016/j.molcata.2006.03.043Suche in Google Scholar

[8] Jacobson, K. A. (2009). Functionalized congener approach to the design of ligands for G protein-coupled receptors (GPCRs). Bioconjugate Chemistry, 20, 1816–1835. DOI: 10.1021/bc9000596. http://dx.doi.org/10.1021/bc900059610.1021/bc9000596Suche in Google Scholar

[9] Kanagasabapathy, S., Sudalai, A., & Benicewicz, B. C. (2001). Montmorillonite K 10-catalyzed regioselective addition of thiols and thiobenzoic acids onto olefins: an efficient synthesis of dithiocarboxylic esters. Tetrahedron Letters, 42, 3791–3794. DOI: 10.1016/S0040-4039(01)00570-6. http://dx.doi.org/10.1016/S0040-4039(01)00570-610.1016/S0040-4039(01)00570-6Suche in Google Scholar

[10] Khan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R., & Akkurt, M. (2010). 5-(4-Chlorophenyl)-3-(2-furyl)-1,2,4-triazolo[3,4-a]isoquinoline. Acta Crystallographica E, 66, 1061. DOI: 10.1107/S1600536810012924. http://dx.doi.org/10.1107/S160053681001292410.1107/S1600536810012924Suche in Google Scholar PubMed PubMed Central

[11] Khan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R., & Ng, S. W. (2009a). 1-(4-Chlorophenyl)-2-phenyl-2-(3-phenyl-1-isoquinolylsulfanyl)ethanone. Acta Crystallographica E, 65, 2732. DOI: 10.1107/S1600536809041282. http://dx.doi.org/10.1107/S160053680904128210.1107/S1600536809041282Suche in Google Scholar PubMed PubMed Central

[12] Khan, F. N., Manivel, P., Prabakaran, K., Hathwar, V. R., & Ng, S. W. (2009b). 2-[2-(Cyclohexylcarbonyl)phenyl]-1-phenylethanone. Acta Crystallographica E, 65, 2745. DOI: 10.1107/S1600536809041270. http://dx.doi.org/10.1107/S160053680904127010.1107/S1600536809041270Suche in Google Scholar PubMed PubMed Central

[13] Khatik, G. L., Sharma, G., Kumar, R., & Chakraborti, A. K. (2007). Scope and limitations of HClO4-SiO2 as an extremely efficient, inexpensive, and reusable catalyst for chemoselective carbon-sulfur bond formation. Tetrahedron, 63, 1200–1210. DOI: 10.1016/j.tet.2006.11.050. http://dx.doi.org/10.1016/j.tet.2006.11.05010.1016/j.tet.2006.11.050Suche in Google Scholar

[14] Kondo, T., & Mitsudo, T. (2000). Metal-catalyzed carbon-sulfur bond formation. Chemical Reviews, 100, 3205–3220. DOI: 10.1021/cr9902749. http://dx.doi.org/10.1021/cr990274910.1021/cr9902749Suche in Google Scholar PubMed

[15] Kumar, A., & Akanksha (2007). Amino acid catalyzed thio-Michael addition reactions. Tetrahedron, 63, 11086–11092. DOI: 10.1016/j.tet.2007.08.033. http://dx.doi.org/10.1016/j.tet.2007.08.03310.1016/j.tet.2007.08.033Suche in Google Scholar

[16] Robinson, J. C., Jr., & Snyder, H. R. (1955). β-phenylethylamine. Organic Syntheses, Collective Volume 3, 720. Suche in Google Scholar

[17] Perrier, S., & Tokolpuckdee, P. (2005). Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 43, 5347–5393. DOI: 10.1002/pola.20986. http://dx.doi.org/10.1002/pola.2098610.1002/pola.20986Suche in Google Scholar

[18] Prabakaran, K., & Khan, F. N. (2010). Basic alumina-catalyzed, solvent-free synthesis of diversified thioethers. Phosphorus, Sulfur, and Silicon and the Related Elements, 185, 825–831. DOI: 10.1080/10426500902998131. http://dx.doi.org/10.1080/1042650090299813110.1080/10426500902998131Suche in Google Scholar

[19] Ranu, B. C., & Dey, S. S. (2004). Catalysis by ionic liquid: a simple, green and efficient procedure for the Michael addition of thiols and thiophosphate to conjugated alkenes in ionic liquid, [pmIm]Br. Tetrahedron, 60, 4183–4188. DOI: 10.1016/j.tet.2004.03.052. http://dx.doi.org/10.1016/j.tet.2004.03.05210.1016/j.tet.2004.03.052Suche in Google Scholar

[20] Salvatore, R. N., Smith, R. A., Nischwitz, A. K., & Gavin, T. (2005). A mild and highly convenient chemoselective alkylation of thiols using Cs2CO3-TBAI. Tetrahedron Letters, 46, 8931–8935. DOI: 10.1016/j.tetlet.2005.10.062. http://dx.doi.org/10.1016/j.tetlet.2005.10.06210.1016/j.tetlet.2005.10.062Suche in Google Scholar

[21] Sudalai, A., Kanagasabapathy, S., & Benicewicz, B. C. (2000). Phosphorus pentasulfide: A mild and versatile catalyst/reagent for the preparation of dithiocarboxylic esters. Organic Letters, 2, 3213–3216. DOI: 10.1021/ol006407q. http://dx.doi.org/10.1021/ol006407q10.1021/ol006407qSuche in Google Scholar PubMed

[22] Thang, S. H., Chong, (B.) Y. K., Mayadunne, R. T. A., Moad, G., & Rizzardo, E. (1999). A novel synthesis of functional dithioesters, dithiocarbamates, xanthates and trithiocarbonates. Tetrahedron Letters, 40, 2435–2438. DOI: 10.1016/S0040-4039(99)00177-X. http://dx.doi.org/10.1016/S0040-4039(99)00177-X10.1016/S0040-4039(99)00177-XSuche in Google Scholar

[23] Wight, A. P., & Davis, M. E. (2002). Design and preparation of organic-inorganic hybrid catalysts. Chemical Reviews, 102, 3589–3614. DOI: 10.1021/cr010334m. http://dx.doi.org/10.1021/cr010334m10.1021/cr010334mSuche in Google Scholar PubMed

Published Online: 2011-7-23
Published in Print: 2011-10-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. 5th conference on membrane science and technology PERMEA 2010
  2. A procedure for the determination of dichloromethane and tetrachloroethene in water using pervaporation and gas chromatography
  3. Modeling of diffusive transport of benzoic acid through a liquid membrane
  4. Comparison of ceramic capillary membrane and ceramic tubular membrane with inserted static mixer
  5. New approach to regeneration of an ionic liquid containing solvent by molecular distillation
  6. Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane
  7. Determination of carbon in solidified sodium coolant using new ICP-OES methods
  8. Interpretation of interactions of halogenated hydrocarbons with modified silica adsorbent coated with 3-benzylketoimine group silane
  9. Adaptive nonlinear control of a continuous stirred tank reactor
  10. Anaerobic baffled reactor treatment of biodiesel-processing wastewater with high strength of methanol and glycerol: reactor performance and biogas production
  11. Analysis of streptolydigin degradation and conversion in cultural supernatants of Streptomyces lydicus AS 4.2501
  12. Spectroscopic and magnetic evidence of coordination properties of bioactive diethyl (pyridin-4-ylmethyl)phosphate ligand with chloride transition-metal ions
  13. Microstructure and properties of polyhydroxybutyrate-calcium phosphate cement composites
  14. Intercalation of basic amino acids into layered zirconium proline-N-methylphosphonate phosphate
  15. Effect of sol-gel preparation method on particle morphology in pure and nanocomposite PZT thin films
  16. Synthesis, spectroscopic and configurational study, and ab initio calculations of new diazaphospholanes
  17. Synthesis and in vitro antimicrobial activity of new 3-(2-morpholinoquinolin-3-yl) substituted acrylonitrile and propanenitrile derivatives
  18. Silicon-based thiourea-mediated and microwave-assisted thio-Michael addition under solvent-free reaction conditions
  19. One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst
  20. Comparison and optimisation of biodiesel production from Jatropha curcas oil using supercritical methyl acetate and methanol
  21. Determination of photoredox properties of individual kinetically labile complexes in equilibrium systems
  22. A halogenated coumarin from Ficus krishnae
  23. 4β-Isocyanopodophyllotoxins: valuable precursors for the synthesis of new podophyllotoxin analogues
  24. Environmentally benign one-pot synthesis and antimicrobial activity of 1-methyl-2,6-diarylpiperidin-4-ones
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0052-z/html
Button zum nach oben scrollen