Startseite Intercalation of basic amino acids into layered zirconium proline-N-methylphosphonate phosphate
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Intercalation of basic amino acids into layered zirconium proline-N-methylphosphonate phosphate

  • Ren-Quan Zeng EMAIL logo , Xiang-Kai Fu und Xin-Bin Yang
Veröffentlicht/Copyright: 23. Juli 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Intercalation of basic amino acids into layered zirconium proline-N-methylphosphonate phosphate (α-ZPMP) was investigated at room temperature. Three kinds of host-guest compounds were prepared and characterised by elemental analysis, inductively coupled plasma analysis (ICP), Fourier transform infrared spectrum (FT-IR), Raman spectrum, X-ray powder diffraction (XRD) and thermoanalysis. The interaction of amino acid guests with P-OH of α-ZPMP host was documented by FT-IR and Raman spectra. In addition, the XRD patterns indicated that l-arginine or l-lysine were intercalated into the interlayer galleries of α-ZPMP host; the interlayer distances of the Larginine and l-lysine intercalation compounds were expanded from 1.520 nm to 2.218 nm and 2.207 nm, respectively. l-arginine and l-lysine would be arranged as a mono-molecule layer in different orientations. The interlayer distance of l-histidine (d = 1.522 nm) was similar to that of α-ZPMP host (d = 1.520 nm), l-histidine might be adsorbed on the outer surface of the α-ZPMP host. Thermoanalysis showed that the intercalated l-arginine and l-lysine were removed at 110–305°C or 150–250°C, respectively, the adsorbed l-histidine was released at a temperature of up to 320°C.

[1] Alberti, G., Casciola, M., Costantino, U., & Vivani, R. (1996). Layered and pillered metal(IV) phosphates and phosphonate. Advanced Materials, 8, 291–303. DOI: 10.1002/adma.199600 80405. http://dx.doi.org/10.1002/adma.19960080405Suche in Google Scholar

[2] Alberti, G., Costantino, U., Alluilli, S., & Tomassini, N. (1978). Crystalline Zr(R-PO3)2 and Zr(R-OPO3)2 compounds (R = organic radical): A new class of materials having layered structure of the zirconium phosphate type. Journal of Inorganic and Nuclear Chemistry, 40, 1113–1117. DOI: 10.1016/0022-1902(78)80520-X. http://dx.doi.org/10.1016/0022-1902(78)80520-X10.1016/0022-1902(78)80520-XSuche in Google Scholar

[3] Behrendt, D., Beneke, K., & Lagaly, G. (1976). Intercalation compounds of zirconium phosphate. Angewandte Chemie International Edition, 15, 544–545. DOI: 10.1002/anie.197605 441. http://dx.doi.org/10.1002/anie.197605441Suche in Google Scholar

[4] Beneš, L., Melánová, K., Svoboda, J., Zima, V., & Kincl, M. (2007). Intercalation of aminonaphthalenes into α-zirconium hydrogenphosphate. Journal of Physics and Chemistry of Solids, 68, 803–807. DOI: 10.1016/j.jpcs.2006.12.017. http://dx.doi.org/10.1016/j.jpcs.2006.12.01710.1016/j.jpcs.2006.12.017Suche in Google Scholar

[5] Beneš, L., Melánová, K., Zima, V., Patrono, P., & Galli, P (2003). Intercalation of amino alcohols into α-Zr(HPO4)2· H2O. European Journal of Inorganic Chemistry, 2003, 1577–1580. DOI: 10.1002/ejic.200390206. http://dx.doi.org/10.1002/ejic.20039020610.1002/ejic.200390206Suche in Google Scholar

[6] Bhambhani, A., & Kumar, C. V. (2006). Protein/DNA/inorganic materials: DNA binding to layered α-zirconium phosphate enhances bound protein structure and activity. Advanced Materials, 18, 939–942. DOI: 10.1002/adma.200502 230. http://dx.doi.org/10.1002/adma.200502230Suche in Google Scholar

[7] Casciola, M., Capitani, D., Donnadio, A., Frittella, V., Pica, M., & Sganappa, M. (2009). Preparation, proton conductivity and mechanical properties of nafion 117-zirconium phosphate sulphophenylphosphonate composite membranes. Fuel Cells, 9, 381–386. DOI: 10.1002/fuce.200800128. http://dx.doi.org/10.1002/fuce.20080012810.1002/fuce.200800128Suche in Google Scholar

[8] Clearfield, A. (1988). Role of ion exchange in solid-state chemistry. Chemical Reviews, 88, 125–148. DOI: 10.1021/cr00083 a007. http://dx.doi.org/10.1021/cr00083a007Suche in Google Scholar

[9] Clearfield, A., & Smith, G. D. (1969). The crystallography and structure of α-zirconium bis(monohydrogen orthophosphate) monohydrate. Inorganic Chemisitry, 8, 431–436. DOI: 10.1021/ic50073a005. http://dx.doi.org/10.1021/ic50073a00510.1021/ic50073a005Suche in Google Scholar

[10] Clearfield, A., & Stynes, J. A. (1964). The preparation of crystalline zirconium phosphate and some observation on its exchange behaviour. Journal of Inorganic and Nuclear Chemistry, 26, 117–119. DOI: 10.1016/0022-1902(64)80238-4. http://dx.doi.org/10.1016/0022-1902(64)80238-410.1016/0022-1902(64)80238-4Suche in Google Scholar

[11] Costantino, U. (1979). Intercalation of alkanols and glycols into zirconium(IV) hydrogenphosphate monohydrate. Journal of the Chemical Society, Dalton Transactions, 1979, 402–405. DOI: 10.1039/dt9790000402. http://dx.doi.org/10.1039/dt9790000402Suche in Google Scholar

[12] Costantino, U., Fringuelli, F., Orrù, M., Nocchetti, M., Piermatti, O., & Pizzo, F. (2009). Direct aza-Diels-Alder reaction in water catalyzed by layered α-zirconium hydrogen phosphate and sodium dodecyl sulfate. European Journal of Organic Chemistry, 2009, 1214–1220. DOI: 10.1002/ejoc.200801132. 10.1002/ejoc.200801132Suche in Google Scholar

[13] Costantino, U., Nocchetti, M., & Vivani, R. (2002). Preparation, characterization, and structure of zirconium fluoride alkylamino-N,N-bis methylphosphonates: A new design for layered zirconium diphosphonates with a poorly hindered interlayer region. Journal of the American Chemical Society, 124, 8428–8434. DOI: 10.1021/ja026124o. http://dx.doi.org/10.1021/ja026124o10.1021/ja026124oSuche in Google Scholar PubMed

[14] Díaz, A, David, A., Pérez, R., González, M. L., Báez, A., Wark, S. E., Zhang, P., Clearfield, A., & Colón, J. L. (2010). Nanoencapsulation of insulin into for oral delivery applications. Biomacromolecules, 11, 2465–2470. DOI: 10.1021/bm100659p. http://dx.doi.org/10.1021/bm100659p10.1021/bm100659pSuche in Google Scholar PubMed PubMed Central

[15] Dines, M. B., & DiGiacomo, P. M. (1981). Derivetized lameller phosphates and phosphonetes of M(IV) ions. Inorganic Chemistry, 20, 92–97. DOI: 10.1021/ic50215a022. http://dx.doi.org/10.1021/ic50215a02210.1021/ic50215a022Suche in Google Scholar

[16] Dragone, R., Galli, P., Massucci, M. A., & Trombetta, M. (2003). Preparation and characterization of histidine- and iron-histidine-α-zirconium phosphate intercalation compounds. Catalytic behaviour of the iron derivatives in oxidation reactions with H2O2. Journal of Materials Chemistry, 13, 834–840. DOI: 10.1039/b207687j. http://dx.doi.org/10.1039/b207687j10.1039/b207687jSuche in Google Scholar

[17] Gentili, P. L., Costantino, U., Vivani, R., Latterini, L., Nocchetti, M., & Aloisi, G. G. (2004). Preparation and characterization of zirconium phosphonate-azobenzene intercalation compounds. A structural, photophysical and photochemical study. Journal of Materials Chemistry, 14, 1656–1662. DOI: 10.1039/b313828c. http://dx.doi.org/10.1039/b313828c10.1039/B313828CSuche in Google Scholar

[18] Hix, G. B., Kitchin, S. J., & Harris, K. D. M. (1998). Topotactic synthesis of α-zirconium phenylphosphonate from α-zirconium phosphate. Journal of the Chemical Society, Dalton Transactions, 1998, 2315–2320. DOI: 10.1039/a802673D. http://dx.doi.org/10.1039/a802673d10.1039/a802673dSuche in Google Scholar

[19] Kijima, T., Ohe, K., Sasaki, F., Yada, M., & Machida, M. (1998). Intercalation of dendritic polyamines by α- and γ-zirconium phosphate. Bulletin of the Chemical Society of Japan, 71, 141–148. DOI: 10.1246/bcsj.71.141. http://dx.doi.org/10.1246/bcsj.71.14110.1246/bcsj.71.141Suche in Google Scholar

[20] Kijima, T., Ueno, S., & Goto, M. (1982). Uptake of amino-acids by zirconium phosphates. Part 2. Intercalation of l-histidine, l-lysine, and l-arginine by α-zirconium phosphate. Journal of the Chemical Society, Dalton Transactions, 1982, 2499–2503. DOI: 10.1039/DT9820002499. 10.1039/DT9820002499Suche in Google Scholar

[21] Kumar, C. V., & Chaudhari, A. (2000). Proteins immobilized at the galleries of layered α-zirconium phosphate: Structure and activity studies. Journal of the American Chemical Society, 122, 830–837. DOI: 10.1021/ja993310u. http://dx.doi.org/10.1021/ja993310u10.1021/ja993310uSuche in Google Scholar

[22] Martí, A. A., & Colón, J. L. (2010). Photophysical characterization of the interactions among tris(2,2′-bipyridyl)ruthenium (II) complexes ion-exchanged within zirconium phosphate. Inorganic Chemistry, 49, 7298–7303. DOI: 10.1021/ic9024 19z. http://dx.doi.org/10.1021/ic902419zSuche in Google Scholar

[23] Martí, A. A., & Colón, J. L. (2003). Direct ion exchange of tris(2,2’-bipyridine)ruthenium into an α-zirconium phosphate framework. Inorganic Chemistry, 42, 2830–2832. DOI: 10.1021/ic025548g. http://dx.doi.org/10.1021/ic025548g10.1021/ic025548gSuche in Google Scholar PubMed

[24] Martí, A. A., Rivera, N., Soto, K., Maldonado, L., & Colón, J. L. (2007). Intercalation of Re(phen)(CO)3Cl into zirconium phosphate: a water insoluble inorganic complex immobilized in a highly polar rigid matrix. Dalton Transactions, 2007, 1713–1718. DOI: 10.1039/b618802h. http://dx.doi.org/10.1039/b618802h10.1039/B618802HSuche in Google Scholar PubMed

[25] Rao, X.-P., Fu, X.-K., & Rao, K. (2004). Synthesis and intercalation behavior of layered zirconium (proline-N-methylphosphonate-phosphate). Chemical Journal of Chinese Universities, 25, 1209–1212. Suche in Google Scholar

[26] Sebti, S., Zahouily, M., Lazrek, H. B., Mayoral, J. A., & Macquarrie, D. J. (2008). Phosphates: new generation of liquid-phase heterogeneous catalysts in organic chemistry. Current Organic Chemistry, 12, 203–232. DOI: 10.2174/138527208783497484. http://dx.doi.org/10.2174/13852720878349748410.2174/138527208783497484Suche in Google Scholar

[27] Sui, Y., Fu, X., Zeng, R., & Ma, X. (2004). Preparation, characterization and application of a new type of ion exchanger and solid acid zirconium sulfonated oligopolystyrenylphosphonate-phosphate supported on ZrO2. Journal of Molecular Catalysis A: Chemical, 217, 133–138. DOI: 10.1016/j.molcata.2004.03.003. http://dx.doi.org/10.1016/j.molcata.2004.03.00310.1016/j.molcata.2004.03.003Suche in Google Scholar

[28] Vermeulen, L. A., & Thompson, M. E. (1992). Stable photoinduced charge separation in layered viologen compounds. Nature, 358, 656–658. DOI: 10.1038/358656a0. http://dx.doi.org/10.1038/358656a010.1038/358656a0Suche in Google Scholar

[29] Yang, X.-B., Fu, X.-K., & Zeng, R.-Q. (2010). Intercalation of non-aromatic heterocyclic amines into layered zirconium glycine-N,N-dimethylphosphonate. Chemical Papers, 64, 118–122. DOI: 10.2478/s11696-009-0091-x. http://dx.doi.org/10.2478/s11696-009-0091-x10.2478/s11696-009-0091-xSuche in Google Scholar

[30] Zeng, R., Fu, X., Gong, C., Sui, Y., Ma, X., & Yang, X. (2005). Preparation and catalytic property of the solid base supported on the mixed zirconium phosphate phosphonate for Knoevenagel condensation. Journal of Molecular Catalysis A: Chemical, 229, 1–5. DOI: 10.1016/j.molcata.2004.11.002. http://dx.doi.org/10.1016/j.molcata.2004.11.00210.1016/j.molcata.2004.11.002Suche in Google Scholar

[31] Zeng, R., Fu, X., Sui, Y., Yang, X., Sun, M., & Chen, J. (2008). Synthesis, characterization and intercalation property of layered zirconium benzylamino-N,N-dimethylphosphonate phosphate materials. Journal of Organometallic Chemistry, 693, 2666–2672. DOI: 10.1016/j.jorganchem.2008.04.009. http://dx.doi.org/10.1016/j.jorganchem.2008.04.00910.1016/j.jorganchem.2008.04.009Suche in Google Scholar

Published Online: 2011-7-23
Published in Print: 2011-10-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. 5th conference on membrane science and technology PERMEA 2010
  2. A procedure for the determination of dichloromethane and tetrachloroethene in water using pervaporation and gas chromatography
  3. Modeling of diffusive transport of benzoic acid through a liquid membrane
  4. Comparison of ceramic capillary membrane and ceramic tubular membrane with inserted static mixer
  5. New approach to regeneration of an ionic liquid containing solvent by molecular distillation
  6. Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane
  7. Determination of carbon in solidified sodium coolant using new ICP-OES methods
  8. Interpretation of interactions of halogenated hydrocarbons with modified silica adsorbent coated with 3-benzylketoimine group silane
  9. Adaptive nonlinear control of a continuous stirred tank reactor
  10. Anaerobic baffled reactor treatment of biodiesel-processing wastewater with high strength of methanol and glycerol: reactor performance and biogas production
  11. Analysis of streptolydigin degradation and conversion in cultural supernatants of Streptomyces lydicus AS 4.2501
  12. Spectroscopic and magnetic evidence of coordination properties of bioactive diethyl (pyridin-4-ylmethyl)phosphate ligand with chloride transition-metal ions
  13. Microstructure and properties of polyhydroxybutyrate-calcium phosphate cement composites
  14. Intercalation of basic amino acids into layered zirconium proline-N-methylphosphonate phosphate
  15. Effect of sol-gel preparation method on particle morphology in pure and nanocomposite PZT thin films
  16. Synthesis, spectroscopic and configurational study, and ab initio calculations of new diazaphospholanes
  17. Synthesis and in vitro antimicrobial activity of new 3-(2-morpholinoquinolin-3-yl) substituted acrylonitrile and propanenitrile derivatives
  18. Silicon-based thiourea-mediated and microwave-assisted thio-Michael addition under solvent-free reaction conditions
  19. One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst
  20. Comparison and optimisation of biodiesel production from Jatropha curcas oil using supercritical methyl acetate and methanol
  21. Determination of photoredox properties of individual kinetically labile complexes in equilibrium systems
  22. A halogenated coumarin from Ficus krishnae
  23. 4β-Isocyanopodophyllotoxins: valuable precursors for the synthesis of new podophyllotoxin analogues
  24. Environmentally benign one-pot synthesis and antimicrobial activity of 1-methyl-2,6-diarylpiperidin-4-ones
Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0049-7/html
Button zum nach oben scrollen