Abstract
Intercalation of basic amino acids into layered zirconium proline-N-methylphosphonate phosphate (α-ZPMP) was investigated at room temperature. Three kinds of host-guest compounds were prepared and characterised by elemental analysis, inductively coupled plasma analysis (ICP), Fourier transform infrared spectrum (FT-IR), Raman spectrum, X-ray powder diffraction (XRD) and thermoanalysis. The interaction of amino acid guests with P-OH of α-ZPMP host was documented by FT-IR and Raman spectra. In addition, the XRD patterns indicated that l-arginine or l-lysine were intercalated into the interlayer galleries of α-ZPMP host; the interlayer distances of the Larginine and l-lysine intercalation compounds were expanded from 1.520 nm to 2.218 nm and 2.207 nm, respectively. l-arginine and l-lysine would be arranged as a mono-molecule layer in different orientations. The interlayer distance of l-histidine (d = 1.522 nm) was similar to that of α-ZPMP host (d = 1.520 nm), l-histidine might be adsorbed on the outer surface of the α-ZPMP host. Thermoanalysis showed that the intercalated l-arginine and l-lysine were removed at 110–305°C or 150–250°C, respectively, the adsorbed l-histidine was released at a temperature of up to 320°C.
[1] Alberti, G., Casciola, M., Costantino, U., & Vivani, R. (1996). Layered and pillered metal(IV) phosphates and phosphonate. Advanced Materials, 8, 291–303. DOI: 10.1002/adma.199600 80405. http://dx.doi.org/10.1002/adma.19960080405Suche in Google Scholar
[2] Alberti, G., Costantino, U., Alluilli, S., & Tomassini, N. (1978). Crystalline Zr(R-PO3)2 and Zr(R-OPO3)2 compounds (R = organic radical): A new class of materials having layered structure of the zirconium phosphate type. Journal of Inorganic and Nuclear Chemistry, 40, 1113–1117. DOI: 10.1016/0022-1902(78)80520-X. http://dx.doi.org/10.1016/0022-1902(78)80520-X10.1016/0022-1902(78)80520-XSuche in Google Scholar
[3] Behrendt, D., Beneke, K., & Lagaly, G. (1976). Intercalation compounds of zirconium phosphate. Angewandte Chemie International Edition, 15, 544–545. DOI: 10.1002/anie.197605 441. http://dx.doi.org/10.1002/anie.197605441Suche in Google Scholar
[4] Beneš, L., Melánová, K., Svoboda, J., Zima, V., & Kincl, M. (2007). Intercalation of aminonaphthalenes into α-zirconium hydrogenphosphate. Journal of Physics and Chemistry of Solids, 68, 803–807. DOI: 10.1016/j.jpcs.2006.12.017. http://dx.doi.org/10.1016/j.jpcs.2006.12.01710.1016/j.jpcs.2006.12.017Suche in Google Scholar
[5] Beneš, L., Melánová, K., Zima, V., Patrono, P., & Galli, P (2003). Intercalation of amino alcohols into α-Zr(HPO4)2· H2O. European Journal of Inorganic Chemistry, 2003, 1577–1580. DOI: 10.1002/ejic.200390206. http://dx.doi.org/10.1002/ejic.20039020610.1002/ejic.200390206Suche in Google Scholar
[6] Bhambhani, A., & Kumar, C. V. (2006). Protein/DNA/inorganic materials: DNA binding to layered α-zirconium phosphate enhances bound protein structure and activity. Advanced Materials, 18, 939–942. DOI: 10.1002/adma.200502 230. http://dx.doi.org/10.1002/adma.200502230Suche in Google Scholar
[7] Casciola, M., Capitani, D., Donnadio, A., Frittella, V., Pica, M., & Sganappa, M. (2009). Preparation, proton conductivity and mechanical properties of nafion 117-zirconium phosphate sulphophenylphosphonate composite membranes. Fuel Cells, 9, 381–386. DOI: 10.1002/fuce.200800128. http://dx.doi.org/10.1002/fuce.20080012810.1002/fuce.200800128Suche in Google Scholar
[8] Clearfield, A. (1988). Role of ion exchange in solid-state chemistry. Chemical Reviews, 88, 125–148. DOI: 10.1021/cr00083 a007. http://dx.doi.org/10.1021/cr00083a007Suche in Google Scholar
[9] Clearfield, A., & Smith, G. D. (1969). The crystallography and structure of α-zirconium bis(monohydrogen orthophosphate) monohydrate. Inorganic Chemisitry, 8, 431–436. DOI: 10.1021/ic50073a005. http://dx.doi.org/10.1021/ic50073a00510.1021/ic50073a005Suche in Google Scholar
[10] Clearfield, A., & Stynes, J. A. (1964). The preparation of crystalline zirconium phosphate and some observation on its exchange behaviour. Journal of Inorganic and Nuclear Chemistry, 26, 117–119. DOI: 10.1016/0022-1902(64)80238-4. http://dx.doi.org/10.1016/0022-1902(64)80238-410.1016/0022-1902(64)80238-4Suche in Google Scholar
[11] Costantino, U. (1979). Intercalation of alkanols and glycols into zirconium(IV) hydrogenphosphate monohydrate. Journal of the Chemical Society, Dalton Transactions, 1979, 402–405. DOI: 10.1039/dt9790000402. http://dx.doi.org/10.1039/dt9790000402Suche in Google Scholar
[12] Costantino, U., Fringuelli, F., Orrù, M., Nocchetti, M., Piermatti, O., & Pizzo, F. (2009). Direct aza-Diels-Alder reaction in water catalyzed by layered α-zirconium hydrogen phosphate and sodium dodecyl sulfate. European Journal of Organic Chemistry, 2009, 1214–1220. DOI: 10.1002/ejoc.200801132. 10.1002/ejoc.200801132Suche in Google Scholar
[13] Costantino, U., Nocchetti, M., & Vivani, R. (2002). Preparation, characterization, and structure of zirconium fluoride alkylamino-N,N-bis methylphosphonates: A new design for layered zirconium diphosphonates with a poorly hindered interlayer region. Journal of the American Chemical Society, 124, 8428–8434. DOI: 10.1021/ja026124o. http://dx.doi.org/10.1021/ja026124o10.1021/ja026124oSuche in Google Scholar PubMed
[14] Díaz, A, David, A., Pérez, R., González, M. L., Báez, A., Wark, S. E., Zhang, P., Clearfield, A., & Colón, J. L. (2010). Nanoencapsulation of insulin into for oral delivery applications. Biomacromolecules, 11, 2465–2470. DOI: 10.1021/bm100659p. http://dx.doi.org/10.1021/bm100659p10.1021/bm100659pSuche in Google Scholar PubMed PubMed Central
[15] Dines, M. B., & DiGiacomo, P. M. (1981). Derivetized lameller phosphates and phosphonetes of M(IV) ions. Inorganic Chemistry, 20, 92–97. DOI: 10.1021/ic50215a022. http://dx.doi.org/10.1021/ic50215a02210.1021/ic50215a022Suche in Google Scholar
[16] Dragone, R., Galli, P., Massucci, M. A., & Trombetta, M. (2003). Preparation and characterization of histidine- and iron-histidine-α-zirconium phosphate intercalation compounds. Catalytic behaviour of the iron derivatives in oxidation reactions with H2O2. Journal of Materials Chemistry, 13, 834–840. DOI: 10.1039/b207687j. http://dx.doi.org/10.1039/b207687j10.1039/b207687jSuche in Google Scholar
[17] Gentili, P. L., Costantino, U., Vivani, R., Latterini, L., Nocchetti, M., & Aloisi, G. G. (2004). Preparation and characterization of zirconium phosphonate-azobenzene intercalation compounds. A structural, photophysical and photochemical study. Journal of Materials Chemistry, 14, 1656–1662. DOI: 10.1039/b313828c. http://dx.doi.org/10.1039/b313828c10.1039/B313828CSuche in Google Scholar
[18] Hix, G. B., Kitchin, S. J., & Harris, K. D. M. (1998). Topotactic synthesis of α-zirconium phenylphosphonate from α-zirconium phosphate. Journal of the Chemical Society, Dalton Transactions, 1998, 2315–2320. DOI: 10.1039/a802673D. http://dx.doi.org/10.1039/a802673d10.1039/a802673dSuche in Google Scholar
[19] Kijima, T., Ohe, K., Sasaki, F., Yada, M., & Machida, M. (1998). Intercalation of dendritic polyamines by α- and γ-zirconium phosphate. Bulletin of the Chemical Society of Japan, 71, 141–148. DOI: 10.1246/bcsj.71.141. http://dx.doi.org/10.1246/bcsj.71.14110.1246/bcsj.71.141Suche in Google Scholar
[20] Kijima, T., Ueno, S., & Goto, M. (1982). Uptake of amino-acids by zirconium phosphates. Part 2. Intercalation of l-histidine, l-lysine, and l-arginine by α-zirconium phosphate. Journal of the Chemical Society, Dalton Transactions, 1982, 2499–2503. DOI: 10.1039/DT9820002499. 10.1039/DT9820002499Suche in Google Scholar
[21] Kumar, C. V., & Chaudhari, A. (2000). Proteins immobilized at the galleries of layered α-zirconium phosphate: Structure and activity studies. Journal of the American Chemical Society, 122, 830–837. DOI: 10.1021/ja993310u. http://dx.doi.org/10.1021/ja993310u10.1021/ja993310uSuche in Google Scholar
[22] Martí, A. A., & Colón, J. L. (2010). Photophysical characterization of the interactions among tris(2,2′-bipyridyl)ruthenium (II) complexes ion-exchanged within zirconium phosphate. Inorganic Chemistry, 49, 7298–7303. DOI: 10.1021/ic9024 19z. http://dx.doi.org/10.1021/ic902419zSuche in Google Scholar
[23] Martí, A. A., & Colón, J. L. (2003). Direct ion exchange of tris(2,2’-bipyridine)ruthenium into an α-zirconium phosphate framework. Inorganic Chemistry, 42, 2830–2832. DOI: 10.1021/ic025548g. http://dx.doi.org/10.1021/ic025548g10.1021/ic025548gSuche in Google Scholar PubMed
[24] Martí, A. A., Rivera, N., Soto, K., Maldonado, L., & Colón, J. L. (2007). Intercalation of Re(phen)(CO)3Cl into zirconium phosphate: a water insoluble inorganic complex immobilized in a highly polar rigid matrix. Dalton Transactions, 2007, 1713–1718. DOI: 10.1039/b618802h. http://dx.doi.org/10.1039/b618802h10.1039/B618802HSuche in Google Scholar PubMed
[25] Rao, X.-P., Fu, X.-K., & Rao, K. (2004). Synthesis and intercalation behavior of layered zirconium (proline-N-methylphosphonate-phosphate). Chemical Journal of Chinese Universities, 25, 1209–1212. Suche in Google Scholar
[26] Sebti, S., Zahouily, M., Lazrek, H. B., Mayoral, J. A., & Macquarrie, D. J. (2008). Phosphates: new generation of liquid-phase heterogeneous catalysts in organic chemistry. Current Organic Chemistry, 12, 203–232. DOI: 10.2174/138527208783497484. http://dx.doi.org/10.2174/13852720878349748410.2174/138527208783497484Suche in Google Scholar
[27] Sui, Y., Fu, X., Zeng, R., & Ma, X. (2004). Preparation, characterization and application of a new type of ion exchanger and solid acid zirconium sulfonated oligopolystyrenylphosphonate-phosphate supported on ZrO2. Journal of Molecular Catalysis A: Chemical, 217, 133–138. DOI: 10.1016/j.molcata.2004.03.003. http://dx.doi.org/10.1016/j.molcata.2004.03.00310.1016/j.molcata.2004.03.003Suche in Google Scholar
[28] Vermeulen, L. A., & Thompson, M. E. (1992). Stable photoinduced charge separation in layered viologen compounds. Nature, 358, 656–658. DOI: 10.1038/358656a0. http://dx.doi.org/10.1038/358656a010.1038/358656a0Suche in Google Scholar
[29] Yang, X.-B., Fu, X.-K., & Zeng, R.-Q. (2010). Intercalation of non-aromatic heterocyclic amines into layered zirconium glycine-N,N-dimethylphosphonate. Chemical Papers, 64, 118–122. DOI: 10.2478/s11696-009-0091-x. http://dx.doi.org/10.2478/s11696-009-0091-x10.2478/s11696-009-0091-xSuche in Google Scholar
[30] Zeng, R., Fu, X., Gong, C., Sui, Y., Ma, X., & Yang, X. (2005). Preparation and catalytic property of the solid base supported on the mixed zirconium phosphate phosphonate for Knoevenagel condensation. Journal of Molecular Catalysis A: Chemical, 229, 1–5. DOI: 10.1016/j.molcata.2004.11.002. http://dx.doi.org/10.1016/j.molcata.2004.11.00210.1016/j.molcata.2004.11.002Suche in Google Scholar
[31] Zeng, R., Fu, X., Sui, Y., Yang, X., Sun, M., & Chen, J. (2008). Synthesis, characterization and intercalation property of layered zirconium benzylamino-N,N-dimethylphosphonate phosphate materials. Journal of Organometallic Chemistry, 693, 2666–2672. DOI: 10.1016/j.jorganchem.2008.04.009. http://dx.doi.org/10.1016/j.jorganchem.2008.04.00910.1016/j.jorganchem.2008.04.009Suche in Google Scholar
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- 5th conference on membrane science and technology PERMEA 2010
- A procedure for the determination of dichloromethane and tetrachloroethene in water using pervaporation and gas chromatography
- Modeling of diffusive transport of benzoic acid through a liquid membrane
- Comparison of ceramic capillary membrane and ceramic tubular membrane with inserted static mixer
- New approach to regeneration of an ionic liquid containing solvent by molecular distillation
- Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane
- Determination of carbon in solidified sodium coolant using new ICP-OES methods
- Interpretation of interactions of halogenated hydrocarbons with modified silica adsorbent coated with 3-benzylketoimine group silane
- Adaptive nonlinear control of a continuous stirred tank reactor
- Anaerobic baffled reactor treatment of biodiesel-processing wastewater with high strength of methanol and glycerol: reactor performance and biogas production
- Analysis of streptolydigin degradation and conversion in cultural supernatants of Streptomyces lydicus AS 4.2501
- Spectroscopic and magnetic evidence of coordination properties of bioactive diethyl (pyridin-4-ylmethyl)phosphate ligand with chloride transition-metal ions
- Microstructure and properties of polyhydroxybutyrate-calcium phosphate cement composites
- Intercalation of basic amino acids into layered zirconium proline-N-methylphosphonate phosphate
- Effect of sol-gel preparation method on particle morphology in pure and nanocomposite PZT thin films
- Synthesis, spectroscopic and configurational study, and ab initio calculations of new diazaphospholanes
- Synthesis and in vitro antimicrobial activity of new 3-(2-morpholinoquinolin-3-yl) substituted acrylonitrile and propanenitrile derivatives
- Silicon-based thiourea-mediated and microwave-assisted thio-Michael addition under solvent-free reaction conditions
- One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst
- Comparison and optimisation of biodiesel production from Jatropha curcas oil using supercritical methyl acetate and methanol
- Determination of photoredox properties of individual kinetically labile complexes in equilibrium systems
- A halogenated coumarin from Ficus krishnae
- 4β-Isocyanopodophyllotoxins: valuable precursors for the synthesis of new podophyllotoxin analogues
- Environmentally benign one-pot synthesis and antimicrobial activity of 1-methyl-2,6-diarylpiperidin-4-ones
Artikel in diesem Heft
- 5th conference on membrane science and technology PERMEA 2010
- A procedure for the determination of dichloromethane and tetrachloroethene in water using pervaporation and gas chromatography
- Modeling of diffusive transport of benzoic acid through a liquid membrane
- Comparison of ceramic capillary membrane and ceramic tubular membrane with inserted static mixer
- New approach to regeneration of an ionic liquid containing solvent by molecular distillation
- Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane
- Determination of carbon in solidified sodium coolant using new ICP-OES methods
- Interpretation of interactions of halogenated hydrocarbons with modified silica adsorbent coated with 3-benzylketoimine group silane
- Adaptive nonlinear control of a continuous stirred tank reactor
- Anaerobic baffled reactor treatment of biodiesel-processing wastewater with high strength of methanol and glycerol: reactor performance and biogas production
- Analysis of streptolydigin degradation and conversion in cultural supernatants of Streptomyces lydicus AS 4.2501
- Spectroscopic and magnetic evidence of coordination properties of bioactive diethyl (pyridin-4-ylmethyl)phosphate ligand with chloride transition-metal ions
- Microstructure and properties of polyhydroxybutyrate-calcium phosphate cement composites
- Intercalation of basic amino acids into layered zirconium proline-N-methylphosphonate phosphate
- Effect of sol-gel preparation method on particle morphology in pure and nanocomposite PZT thin films
- Synthesis, spectroscopic and configurational study, and ab initio calculations of new diazaphospholanes
- Synthesis and in vitro antimicrobial activity of new 3-(2-morpholinoquinolin-3-yl) substituted acrylonitrile and propanenitrile derivatives
- Silicon-based thiourea-mediated and microwave-assisted thio-Michael addition under solvent-free reaction conditions
- One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst
- Comparison and optimisation of biodiesel production from Jatropha curcas oil using supercritical methyl acetate and methanol
- Determination of photoredox properties of individual kinetically labile complexes in equilibrium systems
- A halogenated coumarin from Ficus krishnae
- 4β-Isocyanopodophyllotoxins: valuable precursors for the synthesis of new podophyllotoxin analogues
- Environmentally benign one-pot synthesis and antimicrobial activity of 1-methyl-2,6-diarylpiperidin-4-ones