Startseite Effect of sol-gel preparation method on particle morphology in pure and nanocomposite PZT thin films
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of sol-gel preparation method on particle morphology in pure and nanocomposite PZT thin films

  • Helena Bruncková EMAIL logo , Ľubomír Medvecký und Pavol Hvizdoš
Veröffentlicht/Copyright: 23. Juli 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Double-scale composite lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) thin films of 360 nm thickness were prepared by a modified composite sol-gel method. PZT films were deposited from both the pure sol and the composite suspension on Pt/Al2O3 substrates by the spin-coating method and were sintered at 650°C. The composite suspension formed after ultrasonic mixing of the PZT nanopowder and PZT sol at the powder/sol mass concentration 0.5 g mL−1. PZT nanopowder (≈ 40–70 nm) was prepared using the conventional sol-gel method and calcination at 500°C. Pure PZT sol was prepared by a modified sol-gel method using a propan-1-ol/propane-1,2-diol mixture as a stabilizing solution. X-ray diffraction (XRD) analysis indicated that the thin films possess a single perovskite phase after their sintering at 650°C. The results of scanning electron microscope (SEM), energy-dispersive X-ray (EDX), atomic force microscopy (AFM), and transmission electron microscopy (TEM) analyses confirmed that the roughness of double-scale composite PZT films (≈ 17 nm) was significantly lower than that of PZT films prepared from pure sol (≈ 40 nm). The composite film consisted of nanosized PZT powder uniformly dispersed in the PZT matrix. In the surface micrograph of the film derived from sol, large round perovskite particles (≈ 100 nm) composed of small spherical individual nanoparticles (≈ 60 nm) were observed. The composite PZT film had a higher crystallinity degree and smoother surface morphology with necklace clusters of nanopowder particles in the sol-gel matrix compared to the pure PZT film. Microstructure of the composite PZT film can be characterized by a bimodal particle size distribution containing spherical perovskite particles from added PZT nanopowder and round perovskite particles from the sol-matrix, (≈ 30–50 nm and ≈ 100–120 nm), respectively. Effect of the PZT film preparation method on the morphology of pure and composite PZT thin films deposited on Pt/Al2O3 substrates was evaluated.

[1] Barrow, D. A., Petroff, T. E., & Sayer, M. (1995). Thick ceramic coatings using a sol gel based ceramic-ceramic 0-3 composite. Surface and Coatings Technology, 76–77, 113–118. DOI: 10.1016/0257-8972(95)02562-6. http://dx.doi.org/10.1016/0257-8972(95)02562-610.1016/0257-8972(95)02562-6Suche in Google Scholar

[2] Bose, A., Maity, T., Bysakh, S., Seal, A., & Sen, S. (2010). Influence of plasma pressure on the growth characteristics and ferroelectric properties of sputter-deposited PZT thin films. Applied Surface Science, 256, 6205–6212. DOI: 10.1016/j.apsusc.2010.03.142. http://dx.doi.org/10.1016/j.apsusc.2010.03.14210.1016/j.apsusc.2010.03.142Suche in Google Scholar

[3] Bruncková, H., Medvecky, L. Briančin, J., & Saksl, K. (2004). Influence of hydrolysis conditions of the acetate sol-gel process on the stoichiometry of PZT powders. Ceramics International, 30, 453–460. DOI: 10.1016/S0272-8842(03)00131-7. http://dx.doi.org/10.1016/S0272-8842(03)00131-710.1016/S0272-8842(03)00131-7Suche in Google Scholar

[4] Corker, D. L., Zhang, Q., Whatmore, R. W., & Perrin, C. (2002). PZT ‘composite’ ferroelectric thick films. Journal of the European Ceramic Society, 22, 383–390. DOI: 10.1016/S0955-2219(01)00260-6. http://dx.doi.org/10.1016/S0955-2219(01)00260-610.1016/S0955-2219(01)00260-6Suche in Google Scholar

[5] Dauchy, F., & Dorey, R. A. (2007). Patterned crack-free PZT films micro-electromechanical system applications. The International Journal of Advanced Manufacturing Technology, 33, 86–94. DOI: 10.1007/s00170-007-0968-1. http://dx.doi.org/10.1007/s00170-007-0968-110.1007/s00170-007-0968-1Suche in Google Scholar

[6] Dorey, R. A., & Whatmore, R. W. (2004). Pyroelectric properties of PZT/PMNZTU composite thick films. Journal of Electroceramics, 12, 191–196. DOI: 10.1023/B:JECR.0000037 726.83564.57. http://dx.doi.org/10.1023/B:JECR.0000037726.83564.5710.1023/B:JECR.0000037726.83564.57Suche in Google Scholar

[7] Duan, Z. X., Yuan, J., Zhao, Q. L., Liu, H. M., Lin, H. B., Zhang, W. T., & Cao, M. S. (2008). Preparation and ferroelectric properties of double-scale PZT composite piezoelectric thick film. Chinese Physics Letters, 25, 1472–1475. DOI: 10.1088/0256-307X/25/4/083. http://dx.doi.org/10.1088/0256-307X/25/4/08310.1088/0256-307X/25/4/083Suche in Google Scholar

[8] Haigh, R. D., & Whatmore, R. W. (2009). On the processing conditions and interfacial chemistry of composite PZT thick films on platinised silicon substrates. Sensors and Actuators A: Physical, 151, 203–212. DOI: 10.1016/j.sna.2009.02.037. http://dx.doi.org/10.1016/j.sna.2009.02.03710.1016/j.sna.2009.02.037Suche in Google Scholar

[9] Liu, D., Wang, C., Zhang, H., Li, J., Zhao, L., & Bai, C. (2001). Domain configuration and interface structure analysis of solgel-derived PZT ferroelectric thin films. Surface and Interface Analysis, 32, 27–31. DOI: 10.1002/sia.999. http://dx.doi.org/10.1002/sia.99910.1002/sia.999Suche in Google Scholar

[10] Meng, X. J., Cheng, J.G., Li, B., Guo, S. L., Ye, H. J., & Chu, J. H. (2000). Low-temperature preparation of highly (111) oriented PZT thin films by a modified sol-gel technique. Journal of Crystal Growth, 208, 541–545. DOI: 10.1016/S0022-0248(99)00420-0. http://dx.doi.org/10.1016/S0022-0248(99)00420-010.1016/S0022-0248(99)00420-0Suche in Google Scholar

[11] Pham, M. T. N., Boukamp, B. A., Bouwmeester, H. J. M., & Blank, D. H. A. (2004). Microstructural and electrical properties of nanocomposite PZT/Pt thin films made by pulsed laser deposition. Ceramics International, 30, 1499–1503. DOI: 10.1016/j.ceramint.2003.12.131. http://dx.doi.org/10.1016/j.ceramint.2003.12.13110.1016/j.ceramint.2003.12.131Suche in Google Scholar

[12] Sayer, M., Lukacs, M., Olding, T., Pang, G., Zou, L., & Chen, Y. (1999). Piezoelectric films and coatings for device purposes. Materials Research Society Symposium Proceedings, 541, 599–604. http://dx.doi.org/10.1557/PROC-541-59910.1557/PROC-541-599Suche in Google Scholar

[13] Shao, Q., Li, A., Ling, H., Wu, D., Wang, Y., & Ming, N. (2001). Growth and ferroelectric properties of sol-gel derived Pb(Zr,Ti)O3 using inorganic zirconium precursor. Materials Letters, 50, 32–35. DOI: 10.1016/S0167-577X(00)00408-0. http://dx.doi.org/10.1016/S0167-577X(00)00408-010.1016/S0167-577X(00)00408-0Suche in Google Scholar

[14] Tanase, T., Kobayashi, Y., Miwa T., & Konno, M. (2005). Fabrication and dielectric properties of barium strontium titanate nano-particles/amorphous lead zirconate titanate composite thin film. Thin Solid Films, 485, 22–26. DOI: 10.1016/j.tsf.2005.03.031. http://dx.doi.org/10.1016/j.tsf.2005.03.03110.1016/j.tsf.2005.03.031Suche in Google Scholar

[15] Thountom, S., Naksata, M., Tunkasiri, T., & Thavornyutikarn, P. (2009). Phase evolution and electrical properties of lead zirconate titanate thin films grown by using a triol sol-gel route. Ceramics International, 35, 147–149. DOI: 10.1016/j.ceramint.2007.10.038. http://dx.doi.org/10.1016/j.ceramint.2007.10.03810.1016/j.ceramint.2007.10.038Suche in Google Scholar

[16] Wang, D., Edirisinghe, M. J., & Dorey, R. A. (2008). Formation of PZT crack-free thick films by electrohydrodynamic atomization deposition. Journal of the European Ceramic Society, 28, 2739–2745. DOI: 10.1016/j.jeurceramsoc.2008.04.013. http://dx.doi.org/10.1016/j.jeurceramsoc.2008.04.01310.1016/j.jeurceramsoc.2008.04.013Suche in Google Scholar

[17] Wang, D. W., Jin, H. B., Yuan, J., Wen, B. L., Zhao, Q. L., Zhang, D. Q., & Cao, M. S. (2010). Mechanical reinforcement and piezoelectric properties of PZT ceramics embedded with nano-crystalline. Chinese Physics Letters, 27, 047701–047704. DOI: 10.1088/0256-307X/27/4/047701. http://dx.doi.org/10.1088/0256-307X/27/4/04770110.1088/0256-307X/27/4/047701Suche in Google Scholar

[18] Wang, Z., Zhu, W., Chao, C., Zhao, C., & Chen, X. (2005). Characterization of composite piezoelectric thick film for MEMS application. Surface and Coatings Technology, 198, 384–388. DOI: 10.1016/j.surfcoat.2004.10.104. http://dx.doi.org/10.1016/j.surfcoat.2004.10.10410.1016/j.surfcoat.2004.10.104Suche in Google Scholar

[19] Yang, F., Fei, W. D., & Sun, Q. (2009). Highly (100)-textured Pb(Zr0.52Ti0.48)O3 film derived from a modified sol-gel technique using inorganic zirconium precursor. Journal of Materials Processing Technology, 209, 220–224. DOI: 10.1016/j.jmatprotec.2008.01.042. http://dx.doi.org/10.1016/j.jmatprotec.2008.01.04210.1016/j.jmatprotec.2008.01.042Suche in Google Scholar

[20] Zhang, D. Q., Wang, S. J., Sun, H. S., Wang, X. L., & Cao, M. S. (2007). Synthesis and mechanism research of an ethylene glycol-based sol-gel method for preparing PZT nanopowders. Journal of Sol-Gel Science and Technology, 41, 157–161. DOI: 10.1007/s10971-006-0521-y. http://dx.doi.org/10.1007/s10971-006-0521-y10.1007/s10971-006-0521-ySuche in Google Scholar

[21] Zhao, C., Wang, Z., Zhu, W., Tan, O., & Hng, H. (2004). Microstructure and properties of PZT53/47 thick films derived from sols with submicron-sized PZT particle. Ceramics International, 30, 1925–1927. DOI: 10.1016/j.ceramint.2003.12. 040. http://dx.doi.org/10.1016/j.ceramint.2003.12.04010.1016/j.ceramint.2003.12.040Suche in Google Scholar

[22] Zhao, Q. L., Cao, M. S., Yuan, J., Lu, R., Wang, D. W., & Zhang, D. Q. (2010a). Thickness effect on electrical properties of Pb(Zr0.52Ti0.48)O3 thick films embedded with ZnO nanowhiskers prepared by a hybrid sol-gel route. Materials Letters, 64, 632–635. DOI: 10.1016/j.matlet.2009.12.028. http://dx.doi.org/10.1016/j.matlet.2009.12.02810.1016/j.matlet.2009.12.028Suche in Google Scholar

[23] Zhao, Q. L., Cao, M. S., Yuan, J., Song, W. L., Lu, R., Wang, D. W., & Zhang, D. Q. (2010b). Preparation and electrical properties of Pb(Zr0.52Ti0.48)O3 thick films embedded with ZnO nanowhiskers by a hybrid sol-gel route. Journal of Alloys and Compounds, 492, 264–268. DOI: 10.1016/j.jallcom.2009.11.062. http://dx.doi.org/10.1016/j.jallcom.2009.11.06210.1016/j.jallcom.2009.11.062Suche in Google Scholar

[24] Zhou, Q. F., Chan, H. L. W., & Choy, C. L. (2000). PZT ceramic/ ceramic 0-3 nanocomposite films for ultasonic transducer applications. Thin Solid Films, 375, 95–99. DOI: 10.1016/S0040-6090(00)01232-3. http://dx.doi.org/10.1016/S0040-6090(00)01232-310.1016/S0040-6090(00)01232-3Suche in Google Scholar

Published Online: 2011-7-23
Published in Print: 2011-10-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. 5th conference on membrane science and technology PERMEA 2010
  2. A procedure for the determination of dichloromethane and tetrachloroethene in water using pervaporation and gas chromatography
  3. Modeling of diffusive transport of benzoic acid through a liquid membrane
  4. Comparison of ceramic capillary membrane and ceramic tubular membrane with inserted static mixer
  5. New approach to regeneration of an ionic liquid containing solvent by molecular distillation
  6. Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane
  7. Determination of carbon in solidified sodium coolant using new ICP-OES methods
  8. Interpretation of interactions of halogenated hydrocarbons with modified silica adsorbent coated with 3-benzylketoimine group silane
  9. Adaptive nonlinear control of a continuous stirred tank reactor
  10. Anaerobic baffled reactor treatment of biodiesel-processing wastewater with high strength of methanol and glycerol: reactor performance and biogas production
  11. Analysis of streptolydigin degradation and conversion in cultural supernatants of Streptomyces lydicus AS 4.2501
  12. Spectroscopic and magnetic evidence of coordination properties of bioactive diethyl (pyridin-4-ylmethyl)phosphate ligand with chloride transition-metal ions
  13. Microstructure and properties of polyhydroxybutyrate-calcium phosphate cement composites
  14. Intercalation of basic amino acids into layered zirconium proline-N-methylphosphonate phosphate
  15. Effect of sol-gel preparation method on particle morphology in pure and nanocomposite PZT thin films
  16. Synthesis, spectroscopic and configurational study, and ab initio calculations of new diazaphospholanes
  17. Synthesis and in vitro antimicrobial activity of new 3-(2-morpholinoquinolin-3-yl) substituted acrylonitrile and propanenitrile derivatives
  18. Silicon-based thiourea-mediated and microwave-assisted thio-Michael addition under solvent-free reaction conditions
  19. One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst
  20. Comparison and optimisation of biodiesel production from Jatropha curcas oil using supercritical methyl acetate and methanol
  21. Determination of photoredox properties of individual kinetically labile complexes in equilibrium systems
  22. A halogenated coumarin from Ficus krishnae
  23. 4β-Isocyanopodophyllotoxins: valuable precursors for the synthesis of new podophyllotoxin analogues
  24. Environmentally benign one-pot synthesis and antimicrobial activity of 1-methyl-2,6-diarylpiperidin-4-ones
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0051-0/html
Button zum nach oben scrollen