Abstract
Double-scale composite lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) thin films of 360 nm thickness were prepared by a modified composite sol-gel method. PZT films were deposited from both the pure sol and the composite suspension on Pt/Al2O3 substrates by the spin-coating method and were sintered at 650°C. The composite suspension formed after ultrasonic mixing of the PZT nanopowder and PZT sol at the powder/sol mass concentration 0.5 g mL−1. PZT nanopowder (≈ 40–70 nm) was prepared using the conventional sol-gel method and calcination at 500°C. Pure PZT sol was prepared by a modified sol-gel method using a propan-1-ol/propane-1,2-diol mixture as a stabilizing solution. X-ray diffraction (XRD) analysis indicated that the thin films possess a single perovskite phase after their sintering at 650°C. The results of scanning electron microscope (SEM), energy-dispersive X-ray (EDX), atomic force microscopy (AFM), and transmission electron microscopy (TEM) analyses confirmed that the roughness of double-scale composite PZT films (≈ 17 nm) was significantly lower than that of PZT films prepared from pure sol (≈ 40 nm). The composite film consisted of nanosized PZT powder uniformly dispersed in the PZT matrix. In the surface micrograph of the film derived from sol, large round perovskite particles (≈ 100 nm) composed of small spherical individual nanoparticles (≈ 60 nm) were observed. The composite PZT film had a higher crystallinity degree and smoother surface morphology with necklace clusters of nanopowder particles in the sol-gel matrix compared to the pure PZT film. Microstructure of the composite PZT film can be characterized by a bimodal particle size distribution containing spherical perovskite particles from added PZT nanopowder and round perovskite particles from the sol-matrix, (≈ 30–50 nm and ≈ 100–120 nm), respectively. Effect of the PZT film preparation method on the morphology of pure and composite PZT thin films deposited on Pt/Al2O3 substrates was evaluated.
[1] Barrow, D. A., Petroff, T. E., & Sayer, M. (1995). Thick ceramic coatings using a sol gel based ceramic-ceramic 0-3 composite. Surface and Coatings Technology, 76–77, 113–118. DOI: 10.1016/0257-8972(95)02562-6. http://dx.doi.org/10.1016/0257-8972(95)02562-610.1016/0257-8972(95)02562-6Suche in Google Scholar
[2] Bose, A., Maity, T., Bysakh, S., Seal, A., & Sen, S. (2010). Influence of plasma pressure on the growth characteristics and ferroelectric properties of sputter-deposited PZT thin films. Applied Surface Science, 256, 6205–6212. DOI: 10.1016/j.apsusc.2010.03.142. http://dx.doi.org/10.1016/j.apsusc.2010.03.14210.1016/j.apsusc.2010.03.142Suche in Google Scholar
[3] Bruncková, H., Medvecky, L. Briančin, J., & Saksl, K. (2004). Influence of hydrolysis conditions of the acetate sol-gel process on the stoichiometry of PZT powders. Ceramics International, 30, 453–460. DOI: 10.1016/S0272-8842(03)00131-7. http://dx.doi.org/10.1016/S0272-8842(03)00131-710.1016/S0272-8842(03)00131-7Suche in Google Scholar
[4] Corker, D. L., Zhang, Q., Whatmore, R. W., & Perrin, C. (2002). PZT ‘composite’ ferroelectric thick films. Journal of the European Ceramic Society, 22, 383–390. DOI: 10.1016/S0955-2219(01)00260-6. http://dx.doi.org/10.1016/S0955-2219(01)00260-610.1016/S0955-2219(01)00260-6Suche in Google Scholar
[5] Dauchy, F., & Dorey, R. A. (2007). Patterned crack-free PZT films micro-electromechanical system applications. The International Journal of Advanced Manufacturing Technology, 33, 86–94. DOI: 10.1007/s00170-007-0968-1. http://dx.doi.org/10.1007/s00170-007-0968-110.1007/s00170-007-0968-1Suche in Google Scholar
[6] Dorey, R. A., & Whatmore, R. W. (2004). Pyroelectric properties of PZT/PMNZTU composite thick films. Journal of Electroceramics, 12, 191–196. DOI: 10.1023/B:JECR.0000037 726.83564.57. http://dx.doi.org/10.1023/B:JECR.0000037726.83564.5710.1023/B:JECR.0000037726.83564.57Suche in Google Scholar
[7] Duan, Z. X., Yuan, J., Zhao, Q. L., Liu, H. M., Lin, H. B., Zhang, W. T., & Cao, M. S. (2008). Preparation and ferroelectric properties of double-scale PZT composite piezoelectric thick film. Chinese Physics Letters, 25, 1472–1475. DOI: 10.1088/0256-307X/25/4/083. http://dx.doi.org/10.1088/0256-307X/25/4/08310.1088/0256-307X/25/4/083Suche in Google Scholar
[8] Haigh, R. D., & Whatmore, R. W. (2009). On the processing conditions and interfacial chemistry of composite PZT thick films on platinised silicon substrates. Sensors and Actuators A: Physical, 151, 203–212. DOI: 10.1016/j.sna.2009.02.037. http://dx.doi.org/10.1016/j.sna.2009.02.03710.1016/j.sna.2009.02.037Suche in Google Scholar
[9] Liu, D., Wang, C., Zhang, H., Li, J., Zhao, L., & Bai, C. (2001). Domain configuration and interface structure analysis of solgel-derived PZT ferroelectric thin films. Surface and Interface Analysis, 32, 27–31. DOI: 10.1002/sia.999. http://dx.doi.org/10.1002/sia.99910.1002/sia.999Suche in Google Scholar
[10] Meng, X. J., Cheng, J.G., Li, B., Guo, S. L., Ye, H. J., & Chu, J. H. (2000). Low-temperature preparation of highly (111) oriented PZT thin films by a modified sol-gel technique. Journal of Crystal Growth, 208, 541–545. DOI: 10.1016/S0022-0248(99)00420-0. http://dx.doi.org/10.1016/S0022-0248(99)00420-010.1016/S0022-0248(99)00420-0Suche in Google Scholar
[11] Pham, M. T. N., Boukamp, B. A., Bouwmeester, H. J. M., & Blank, D. H. A. (2004). Microstructural and electrical properties of nanocomposite PZT/Pt thin films made by pulsed laser deposition. Ceramics International, 30, 1499–1503. DOI: 10.1016/j.ceramint.2003.12.131. http://dx.doi.org/10.1016/j.ceramint.2003.12.13110.1016/j.ceramint.2003.12.131Suche in Google Scholar
[12] Sayer, M., Lukacs, M., Olding, T., Pang, G., Zou, L., & Chen, Y. (1999). Piezoelectric films and coatings for device purposes. Materials Research Society Symposium Proceedings, 541, 599–604. http://dx.doi.org/10.1557/PROC-541-59910.1557/PROC-541-599Suche in Google Scholar
[13] Shao, Q., Li, A., Ling, H., Wu, D., Wang, Y., & Ming, N. (2001). Growth and ferroelectric properties of sol-gel derived Pb(Zr,Ti)O3 using inorganic zirconium precursor. Materials Letters, 50, 32–35. DOI: 10.1016/S0167-577X(00)00408-0. http://dx.doi.org/10.1016/S0167-577X(00)00408-010.1016/S0167-577X(00)00408-0Suche in Google Scholar
[14] Tanase, T., Kobayashi, Y., Miwa T., & Konno, M. (2005). Fabrication and dielectric properties of barium strontium titanate nano-particles/amorphous lead zirconate titanate composite thin film. Thin Solid Films, 485, 22–26. DOI: 10.1016/j.tsf.2005.03.031. http://dx.doi.org/10.1016/j.tsf.2005.03.03110.1016/j.tsf.2005.03.031Suche in Google Scholar
[15] Thountom, S., Naksata, M., Tunkasiri, T., & Thavornyutikarn, P. (2009). Phase evolution and electrical properties of lead zirconate titanate thin films grown by using a triol sol-gel route. Ceramics International, 35, 147–149. DOI: 10.1016/j.ceramint.2007.10.038. http://dx.doi.org/10.1016/j.ceramint.2007.10.03810.1016/j.ceramint.2007.10.038Suche in Google Scholar
[16] Wang, D., Edirisinghe, M. J., & Dorey, R. A. (2008). Formation of PZT crack-free thick films by electrohydrodynamic atomization deposition. Journal of the European Ceramic Society, 28, 2739–2745. DOI: 10.1016/j.jeurceramsoc.2008.04.013. http://dx.doi.org/10.1016/j.jeurceramsoc.2008.04.01310.1016/j.jeurceramsoc.2008.04.013Suche in Google Scholar
[17] Wang, D. W., Jin, H. B., Yuan, J., Wen, B. L., Zhao, Q. L., Zhang, D. Q., & Cao, M. S. (2010). Mechanical reinforcement and piezoelectric properties of PZT ceramics embedded with nano-crystalline. Chinese Physics Letters, 27, 047701–047704. DOI: 10.1088/0256-307X/27/4/047701. http://dx.doi.org/10.1088/0256-307X/27/4/04770110.1088/0256-307X/27/4/047701Suche in Google Scholar
[18] Wang, Z., Zhu, W., Chao, C., Zhao, C., & Chen, X. (2005). Characterization of composite piezoelectric thick film for MEMS application. Surface and Coatings Technology, 198, 384–388. DOI: 10.1016/j.surfcoat.2004.10.104. http://dx.doi.org/10.1016/j.surfcoat.2004.10.10410.1016/j.surfcoat.2004.10.104Suche in Google Scholar
[19] Yang, F., Fei, W. D., & Sun, Q. (2009). Highly (100)-textured Pb(Zr0.52Ti0.48)O3 film derived from a modified sol-gel technique using inorganic zirconium precursor. Journal of Materials Processing Technology, 209, 220–224. DOI: 10.1016/j.jmatprotec.2008.01.042. http://dx.doi.org/10.1016/j.jmatprotec.2008.01.04210.1016/j.jmatprotec.2008.01.042Suche in Google Scholar
[20] Zhang, D. Q., Wang, S. J., Sun, H. S., Wang, X. L., & Cao, M. S. (2007). Synthesis and mechanism research of an ethylene glycol-based sol-gel method for preparing PZT nanopowders. Journal of Sol-Gel Science and Technology, 41, 157–161. DOI: 10.1007/s10971-006-0521-y. http://dx.doi.org/10.1007/s10971-006-0521-y10.1007/s10971-006-0521-ySuche in Google Scholar
[21] Zhao, C., Wang, Z., Zhu, W., Tan, O., & Hng, H. (2004). Microstructure and properties of PZT53/47 thick films derived from sols with submicron-sized PZT particle. Ceramics International, 30, 1925–1927. DOI: 10.1016/j.ceramint.2003.12. 040. http://dx.doi.org/10.1016/j.ceramint.2003.12.04010.1016/j.ceramint.2003.12.040Suche in Google Scholar
[22] Zhao, Q. L., Cao, M. S., Yuan, J., Lu, R., Wang, D. W., & Zhang, D. Q. (2010a). Thickness effect on electrical properties of Pb(Zr0.52Ti0.48)O3 thick films embedded with ZnO nanowhiskers prepared by a hybrid sol-gel route. Materials Letters, 64, 632–635. DOI: 10.1016/j.matlet.2009.12.028. http://dx.doi.org/10.1016/j.matlet.2009.12.02810.1016/j.matlet.2009.12.028Suche in Google Scholar
[23] Zhao, Q. L., Cao, M. S., Yuan, J., Song, W. L., Lu, R., Wang, D. W., & Zhang, D. Q. (2010b). Preparation and electrical properties of Pb(Zr0.52Ti0.48)O3 thick films embedded with ZnO nanowhiskers by a hybrid sol-gel route. Journal of Alloys and Compounds, 492, 264–268. DOI: 10.1016/j.jallcom.2009.11.062. http://dx.doi.org/10.1016/j.jallcom.2009.11.06210.1016/j.jallcom.2009.11.062Suche in Google Scholar
[24] Zhou, Q. F., Chan, H. L. W., & Choy, C. L. (2000). PZT ceramic/ ceramic 0-3 nanocomposite films for ultasonic transducer applications. Thin Solid Films, 375, 95–99. DOI: 10.1016/S0040-6090(00)01232-3. http://dx.doi.org/10.1016/S0040-6090(00)01232-310.1016/S0040-6090(00)01232-3Suche in Google Scholar
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- 5th conference on membrane science and technology PERMEA 2010
- A procedure for the determination of dichloromethane and tetrachloroethene in water using pervaporation and gas chromatography
- Modeling of diffusive transport of benzoic acid through a liquid membrane
- Comparison of ceramic capillary membrane and ceramic tubular membrane with inserted static mixer
- New approach to regeneration of an ionic liquid containing solvent by molecular distillation
- Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane
- Determination of carbon in solidified sodium coolant using new ICP-OES methods
- Interpretation of interactions of halogenated hydrocarbons with modified silica adsorbent coated with 3-benzylketoimine group silane
- Adaptive nonlinear control of a continuous stirred tank reactor
- Anaerobic baffled reactor treatment of biodiesel-processing wastewater with high strength of methanol and glycerol: reactor performance and biogas production
- Analysis of streptolydigin degradation and conversion in cultural supernatants of Streptomyces lydicus AS 4.2501
- Spectroscopic and magnetic evidence of coordination properties of bioactive diethyl (pyridin-4-ylmethyl)phosphate ligand with chloride transition-metal ions
- Microstructure and properties of polyhydroxybutyrate-calcium phosphate cement composites
- Intercalation of basic amino acids into layered zirconium proline-N-methylphosphonate phosphate
- Effect of sol-gel preparation method on particle morphology in pure and nanocomposite PZT thin films
- Synthesis, spectroscopic and configurational study, and ab initio calculations of new diazaphospholanes
- Synthesis and in vitro antimicrobial activity of new 3-(2-morpholinoquinolin-3-yl) substituted acrylonitrile and propanenitrile derivatives
- Silicon-based thiourea-mediated and microwave-assisted thio-Michael addition under solvent-free reaction conditions
- One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst
- Comparison and optimisation of biodiesel production from Jatropha curcas oil using supercritical methyl acetate and methanol
- Determination of photoredox properties of individual kinetically labile complexes in equilibrium systems
- A halogenated coumarin from Ficus krishnae
- 4β-Isocyanopodophyllotoxins: valuable precursors for the synthesis of new podophyllotoxin analogues
- Environmentally benign one-pot synthesis and antimicrobial activity of 1-methyl-2,6-diarylpiperidin-4-ones
Artikel in diesem Heft
- 5th conference on membrane science and technology PERMEA 2010
- A procedure for the determination of dichloromethane and tetrachloroethene in water using pervaporation and gas chromatography
- Modeling of diffusive transport of benzoic acid through a liquid membrane
- Comparison of ceramic capillary membrane and ceramic tubular membrane with inserted static mixer
- New approach to regeneration of an ionic liquid containing solvent by molecular distillation
- Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane
- Determination of carbon in solidified sodium coolant using new ICP-OES methods
- Interpretation of interactions of halogenated hydrocarbons with modified silica adsorbent coated with 3-benzylketoimine group silane
- Adaptive nonlinear control of a continuous stirred tank reactor
- Anaerobic baffled reactor treatment of biodiesel-processing wastewater with high strength of methanol and glycerol: reactor performance and biogas production
- Analysis of streptolydigin degradation and conversion in cultural supernatants of Streptomyces lydicus AS 4.2501
- Spectroscopic and magnetic evidence of coordination properties of bioactive diethyl (pyridin-4-ylmethyl)phosphate ligand with chloride transition-metal ions
- Microstructure and properties of polyhydroxybutyrate-calcium phosphate cement composites
- Intercalation of basic amino acids into layered zirconium proline-N-methylphosphonate phosphate
- Effect of sol-gel preparation method on particle morphology in pure and nanocomposite PZT thin films
- Synthesis, spectroscopic and configurational study, and ab initio calculations of new diazaphospholanes
- Synthesis and in vitro antimicrobial activity of new 3-(2-morpholinoquinolin-3-yl) substituted acrylonitrile and propanenitrile derivatives
- Silicon-based thiourea-mediated and microwave-assisted thio-Michael addition under solvent-free reaction conditions
- One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst
- Comparison and optimisation of biodiesel production from Jatropha curcas oil using supercritical methyl acetate and methanol
- Determination of photoredox properties of individual kinetically labile complexes in equilibrium systems
- A halogenated coumarin from Ficus krishnae
- 4β-Isocyanopodophyllotoxins: valuable precursors for the synthesis of new podophyllotoxin analogues
- Environmentally benign one-pot synthesis and antimicrobial activity of 1-methyl-2,6-diarylpiperidin-4-ones