Startseite 4β-Isocyanopodophyllotoxins: valuable precursors for the synthesis of new podophyllotoxin analogues
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

4β-Isocyanopodophyllotoxins: valuable precursors for the synthesis of new podophyllotoxin analogues

  • Ying-Qian Liu EMAIL logo , Lin-Hai Li , Wen-Qun Li , Gang Feng und Liu Yang
Veröffentlicht/Copyright: 23. Juli 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A new and efficient method for the synthesis of novel 4β-isocyanopodophyllotoxins as a valuable building block for the synthesis of versatile bioactive podophyllotoxin analogues under both classical and ultrasonic conditions was developed. In general, significant improvements in rates of reaction and yields of sonochemical reactions relative to the classical ones were observed.

[1] Bohlin, L., & Rosen, B. (1996). Podophyllotoxin derivatives: drug discovery and development. Drug Discovery Today, 1, 343–351. DOI: 10.1016/1359-6446(96)10028-3. http://dx.doi.org/10.1016/1359-6446(96)10028-310.1016/1359-6446(96)10028-3Suche in Google Scholar

[2] Bon, R. S., van Vliet, B., Sprenkels, N. E., Schmitz, R. F., de Kanter, F. J. J., Stevens, C. V., Swart, M., Bickelhaupt, F. M., Groen, M. B., & Orru, R. V. (2005). Multicomponent synthesis of 2-imidazolines. The Journal of Organic Chemistry, 70, 3542–3553. DOI: 10.1021/jo050132g. http://dx.doi.org/10.1021/jo050132g10.1021/jo050132gSuche in Google Scholar

[3] Bremner, W. S., & Organ, M. G. (2007). Multicomponent reactions to form heterocycles by microwave-assisted continuous flow organic synthesis. Journal of Combinatorial Chemistry, 9, 14–16. DOI: 10.1021/cc060130p. http://dx.doi.org/10.1021/cc060130p10.1021/cc060130pSuche in Google Scholar

[4] Dömling, A. (2006). Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chemical Reviews, 106, 17–89. DOI: 10.1021/cr0505728. http://dx.doi.org/10.1021/cr050572810.1021/cr0505728Suche in Google Scholar

[5] Dömling, A., & Ugi, I. (2000). Multicomponent reactions with isocyanides. Angewandte Chemie International Edition, 39, 3168–3210. DOI: 10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U. 10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-USuche in Google Scholar

[6] Dolle, R. E., Le Bourdonnec, B., Goodman, A. J., Morales, G. A., Thomas, C. J., & Zhang, W. (2009). Comprehensive survey of chemical libraries for drug discovery and chemical biology: 2008. Journal of Combinatorial Chemistry, 11, 739–790. DOI: 10.1021/cc9000828. http://dx.doi.org/10.1021/cc900082810.1021/cc9000828Suche in Google Scholar

[7] El Kaim, L., Gizzi, M., Ĝrimaud, L. (2008). New MCR-Heckisomerization cascade toward indoles. Organic Letters, 10, 3417–3419. DOI: 10.1021/ol801217a. http://dx.doi.org/10.1021/ol801217a10.1021/ol801217aSuche in Google Scholar

[8] Gordaliza, M., García, P. A., Miguel del Corral, J. M., Castro, M. A., & Gómez-Zurita, M. A. (2004). Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon, 44, 441–459. DOI: 10.1016/j.toxicon.2004.05.008. http://dx.doi.org/10.1016/j.toxicon.2004.05.00810.1016/j.toxicon.2004.05.008Suche in Google Scholar

[9] Katritzky, A. R., Xie, L., & Fan, W.-Q. (1993). Synthesis of α-amino isocyanides and α-alkylthio isocyanides. Synthesis, 1993, 45–47. DOI: 10.1055/s-1993-25788. http://dx.doi.org/10.1055/s-1993-2578810.1055/s-1993-25788Suche in Google Scholar

[10] Liu, Y.-Q., Li, L.-H., Yang, L., & Li, H.-Y. (2010). A novel, stereoselective and practical protocol for the synthesis of 4β-aminopodophyllotoxins. Chemical Papers, 64, 533–536. DOI: 10.2478/s11696-010-0020-z. http://dx.doi.org/10.2478/s11696-010-0020-z10.2478/s11696-010-0020-zSuche in Google Scholar

[11] Liu, Y.-Q., Liu, Y., Xiao, H., Gao, R., & Tian, X. (2008). Synthesis and insecticidal activities of novel derivatives of podophyllotoxin: Part XII. Pesticide Biochemistry and Physiology, 91, 116–121. DOI: 10.1016/j.pestbp.2008.03.002. http://dx.doi.org/10.1016/j.pestbp.2008.03.00210.1016/j.pestbp.2008.03.002Suche in Google Scholar

[12] Liu, Q. Y., Liu, Y., & Xuan, T. (2007). Podophyllotoxin: Current perspectives. Current Bioactive Compounds, 3, 37–66. DOI: 10.2174/157340707780126499. http://dx.doi.org/10.2174/15734070778012649910.2174/157340707780126499Suche in Google Scholar

[13] Nair, V., Vinod, A. U., & Rajesh, C. (2001). A novel synthesis of 2-aminopyrroles using a three-component reaction. The Journal of Organic Chemistry, 66, 4427–4429. DOI: 10.1021/jo001714v. http://dx.doi.org/10.1021/jo001714v10.1021/jo001714vSuche in Google Scholar

[14] Roulland, E., Magiatis, P., Arimondo, P., Bertounesque, E., & Monneret, C. (2002). Hemi-synthesis and biological activity of new analogues of podophyllotoxin. Bioorganic & Medicinal Chemistry, 10, 3463–3471. DOI: 10.1016/S0968-0896(02)00255-9. http://dx.doi.org/10.1016/S0968-0896(02)00255-910.1016/S0968-0896(02)00255-9Suche in Google Scholar

[15] Shaabani, A., Maleki, A., Mofakham, H., & Khavasi, H. R. (2008). Novel isocyanide-based three-component onepot synthesis of cyanophenylamino-acetamide derivatives. Journal of Combinatorial Chemistry, 10, 883–885. DOI: 10.1021/cc800099r. http://dx.doi.org/10.1021/cc800099r10.1021/cc800099rSuche in Google Scholar

[16] Touré, B. B., & Hall, D. G. (2009). Natural product synthesis using multicomponent reaction strategies. Chemical Reviews, 109, 4439–4486. DOI: 10.1021/cr800296p. http://dx.doi.org/10.1021/cr800296p10.1021/cr800296pSuche in Google Scholar

[17] Wang, Z. Q., Kuo, Y. H., Schnur, D., Bowen, J. P., Liu, S. Y., Han, F. S., Chang, J. Y., Cheng, Y. C., & Lee, K. H. (1990). Antitumor agents. 113. New 4β-arylamino derivatives of 4′-O-demethylepipodophyllotoxin and related compounds as potent inhibitors of human DNA topoisomerase II. Journal of Medicinal Chemistry, 33, 2660–2666. DOI: 10.1021/jm00171a050. http://dx.doi.org/10.1021/jm00171a05010.1021/jm00171a050Suche in Google Scholar

[18] Xu, H., Wang, J., Sun, H., Lv, M., Tian, X., Yao, X., & Zhang, X. (2009). Semisynthesis and quantitative structure-activity relationship (QSAR) study of novel aromatic esters of 4′-demethyl-4-deoxypodophyllotoxin as insecticidal agents. Journal of Agricultural and Food Chemistry, 57, 7919–7923. DOI: 10.1021/jf9020812. http://dx.doi.org/10.1021/jf902081210.1021/jf9020812Suche in Google Scholar

[19] Yu, Y.-P., Chen, S.-Y., Wang, Y.-G., & Chen, Y.-Z. (1999). A facile and efficient synthesis of 4β-aminopodophyllotoxins. Tetrahedron Letters, 40, 1967–1970. DOI: 10.1016/S0040-4039(99)00125-2. http://dx.doi.org/10.1016/S0040-4039(99)00125-210.1016/S0040-4039(99)00125-2Suche in Google Scholar

Published Online: 2011-7-23
Published in Print: 2011-10-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. 5th conference on membrane science and technology PERMEA 2010
  2. A procedure for the determination of dichloromethane and tetrachloroethene in water using pervaporation and gas chromatography
  3. Modeling of diffusive transport of benzoic acid through a liquid membrane
  4. Comparison of ceramic capillary membrane and ceramic tubular membrane with inserted static mixer
  5. New approach to regeneration of an ionic liquid containing solvent by molecular distillation
  6. Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane
  7. Determination of carbon in solidified sodium coolant using new ICP-OES methods
  8. Interpretation of interactions of halogenated hydrocarbons with modified silica adsorbent coated with 3-benzylketoimine group silane
  9. Adaptive nonlinear control of a continuous stirred tank reactor
  10. Anaerobic baffled reactor treatment of biodiesel-processing wastewater with high strength of methanol and glycerol: reactor performance and biogas production
  11. Analysis of streptolydigin degradation and conversion in cultural supernatants of Streptomyces lydicus AS 4.2501
  12. Spectroscopic and magnetic evidence of coordination properties of bioactive diethyl (pyridin-4-ylmethyl)phosphate ligand with chloride transition-metal ions
  13. Microstructure and properties of polyhydroxybutyrate-calcium phosphate cement composites
  14. Intercalation of basic amino acids into layered zirconium proline-N-methylphosphonate phosphate
  15. Effect of sol-gel preparation method on particle morphology in pure and nanocomposite PZT thin films
  16. Synthesis, spectroscopic and configurational study, and ab initio calculations of new diazaphospholanes
  17. Synthesis and in vitro antimicrobial activity of new 3-(2-morpholinoquinolin-3-yl) substituted acrylonitrile and propanenitrile derivatives
  18. Silicon-based thiourea-mediated and microwave-assisted thio-Michael addition under solvent-free reaction conditions
  19. One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst
  20. Comparison and optimisation of biodiesel production from Jatropha curcas oil using supercritical methyl acetate and methanol
  21. Determination of photoredox properties of individual kinetically labile complexes in equilibrium systems
  22. A halogenated coumarin from Ficus krishnae
  23. 4β-Isocyanopodophyllotoxins: valuable precursors for the synthesis of new podophyllotoxin analogues
  24. Environmentally benign one-pot synthesis and antimicrobial activity of 1-methyl-2,6-diarylpiperidin-4-ones
Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0062-x/html
Button zum nach oben scrollen