Abstract
New 2-substituted diazaphospholane-2-oxides (I-III, V-VIII) and diazaphosphorinane-2-oxide (IV) were synthesised and characterised by 1H, 13C, and 31P NMR, IR spectroscopy, and elemental analysis. The presence of chiral diamino groups in compounds II and V–VIII gives rise to various diastereomers so that the 31P{1H} NMR spectra demonstrated three and two peaks with different ratios, respectively. Also, the 1H and 13C{1H} NMR spectra of compounds II and V–VIII revealed three and two sets of signals for the related conformers (diastereomers). Interestingly, the 31P NMR spectrum of V in D2O indicated a great upfield shift (Δδ = 19.0) for 31P relative to the value obtained in DMSO-d6 (solvent effect). The two signals in V split further to three signals in the presence of β-cyclodextrin. Moreover, conformational analysis of diazaphospholane V was studied by ab initio calculations at the HF and B3LYP levels of theory using the Gaussian 98 program. Results indicated that among four suggested diastereomers (C1–C4) of V, C1 and C3 containing methyl group in the equatorial position are the most stable forms.
[1] Amirkhanov, V. M., Ovchynnikov, V. A., Glowiak, T., & Kozlowski, H. (1997). Crystal and molecular structures of N,N′-diphenyl-N″-trichloroacetyl-phosphorictriamide and N,N′-tetraethyl-N″-benzoylphosphorictriamide. The effect of various substituents on the structural parameters of the [C(O)N(H)P(O)] moiety. Zeitschrift für Naturforschung B - A Journal of Chemical Sciences, 52, 1331–1336. Search in Google Scholar
[2] Berlicki, Ł., Rudzińska, E., & Kafarski, P. (2003). Enantiodifferentiation of aminophosphonic and aminophosphinic acids with α- and β-cyclodextrins. Tetrahedron: Asymmetry, 14, 1535–1539. DOI: 10.1016/S0957-4166(03)00273-8. http://dx.doi.org/10.1016/S0957-4166(03)00273-810.1016/S0957-4166(03)00273-8Search in Google Scholar
[3] Corbridge, D. E. C. (1995). Phosphorus: An outline of its chemistry, biochemistry, and technology (5th ed., pp. 55, 57). Amsterdam, The Netherlands: Elsevier. Search in Google Scholar
[4] De la Cruz, A., Koeller, K. J., Rath, N. P., Spilling, C. D., & Vasconcelos, I. C. F. (1998). The synthesis, structure and properties of diazaphospholes: Reagents and ligands for asymmetric synthesis. Tetrahedron, 54, 10513–10524. DOI: 10.1016/S0040-4020(98)00502-X. http://dx.doi.org/10.1016/S0040-4020(98)00502-X10.1016/S0040-4020(98)00502-XSearch in Google Scholar
[5] Denmark, S. E., Miller, P. C., & Wilson, S. R. (1991). Configuration, conformation, and colligative properties of a phosphorus-stabilized anion. Journal of the American Chemical Society, 113, 1468–1470. DOI: 10.1021/ja00004a089. http://dx.doi.org/10.1021/ja00004a08910.1021/ja00004a089Search in Google Scholar
[6] Devillers, J., Navech, J., & Albrand, J.-P. (1971). Heterocycles contenant du phosphore—V. Analyse des spectres de resonance magnetique protonique des oxo-2 methoxy ou phénoxy-2, methyl-3, oxazaphospholanes-1,3,2: Exemples de spectres du type ABXY. Organic Magnetic Resonance, 3, 177–186. DOI: 10.1002/mrc.1270030203. http://dx.doi.org/10.1002/mrc.127003020310.1002/mrc.1270030203Search in Google Scholar
[7] Du, H., Zhao, B., & Shi, Y. (2008). Catalytic asymmetric allylic and homoallylic diamination of terminal olefins via formal C-H activation. Journal of the American Chemical Society, 130, 8590–8591. DOI: 10.1021/ja8027394. http://dx.doi.org/10.1021/ja802739410.1021/ja8027394Search in Google Scholar
[8] Dutasta, J. P., Esteban-Calderon, C., Tinant, B., & Declercq, J.-P. (1990). Structure of bis(1,3-di-o-anisyl-2-thioxo-1,3,2λ 5-diazaphosphorinan-2-yl) oxide. Acta Crystallographica Section C: Crystal Structure Communications, C46, 68–71. DOI: 10.1107/S0108270189005172. http://dx.doi.org/10.1107/S010827018900517210.1107/S0108270189005172Search in Google Scholar
[9] Dutasta, J. P., Grand, A., Guimares, A. C., & Robert, J. B. (1979). Dioxaphospholanes-1,3,2, dimerisation, obtention de composes heterocycliques phosphores et oxygenes a dix chainons: tetra-oxa-1,3,6,8 diphosphecanes-2. Tetrahedron, 35, 197–207. DOI: 10.1016/S0040-4020(01)99482-7. http://dx.doi.org/10.1016/S0040-4020(01)99482-710.1016/S0040-4020(01)99482-7Search in Google Scholar
[10] Gholivand, K., Oroujzadeh, N., Erben, M. F., & Della Védova, C. O. (2009a). Synthesis, spectroscopy, computational study and prospective biological activity of two novel 1,3,2-diazaphospholidine-2,4,5-triones. Polyhedron, 28, 541–547. DOI: 10.1016/j.poly.2008.11.024. http://dx.doi.org/10.1016/j.poly.2008.11.02410.1016/j.poly.2008.11.024Search in Google Scholar
[11] Gholivand, K., Pourayoubi, M., Farshadian, S., Molani, S., & Shariatinia, Z. (2005a). Synthesis and crystal structure of 5,5-dimethyl-2-(p-methylanilino)-2-oxo-1,3,2-diazaphosphorinane. Analytical Sciences: X-ray Structure Analysis Online, 21, x55–x56. http://dx.doi.org/10.2116/analscix.21.x5510.2116/analscix.21.x55Search in Google Scholar
[12] Gholivand, K., Pourayoubi, M., & Shariatinia, Z. (2007a). 2,3J(P,X) [X = H, C] coupling constants dependency to the ring size, hybridization and substituents in new diazaphospholes and diazaphosphorinanes, NMR and X-ray crystallography studies. Polyhedron, 26, 837–844. DOI: 10.1016/j.poly.2006.09.092. http://dx.doi.org/10.1016/j.poly.2006.09.09210.1016/j.poly.2006.09.092Search in Google Scholar
[13] Gholivand, K., Shariatinia, Z., Afshar, F., Faramarzpour, H., & Yaghmaian, F. (2007b). New 1,3,2-diazaphosphorinanes; syntheses, spectroscopic characterization, X-ray crystallography and ab initio calculations. Main Group Chemistry, 6, 231–248. DOI: 10.1080/10241220801994742. http://dx.doi.org/10.1080/1024122080199474210.1080/10241220801994742Search in Google Scholar
[14] Gholivand, K., Shariatinia, Z., Ansar, S., Mashhadi, S. M., & Daeepour, F. (2009b). The first naphthodiazaphosphorinane in the solid phase; syntheses, spectroscopic studies and X-ray crystallography of some new 1,3,2-diheterophosphorus compounds. Structural Chemistry, 20, 481–488. DOI: 10.1007/s11224-009-9445-9. http://dx.doi.org/10.1007/s11224-009-9445-910.1007/s11224-009-9445-9Search in Google Scholar
[15] Gholivand, K., Shariatinia, Z., Mahzouni, H. R., & Amiri, S. (2007c). Phosphorus heterocycles: synthesis, spectroscopic study and X-ray crystallography of some new diazaphosphorinanes. Structural Chemistry, 18, 653–660. DOI: 10.1007/s11224-007-9197-3. http://dx.doi.org/10.1007/s11224-007-9197-310.1007/s11224-007-9197-3Search in Google Scholar
[16] Gholivand, K., Shariatinia, Z., Pourayoubi, M., & Farshadian, S. (2005b). Syntheses and spectroscopic study of some new diazaphospholes and diazaphosphorinanes. Crystal structure of . Zeitschrift für Naturforschung B - A Journal of Chemical Sciences, 60, 1021–1026. 10.1515/znb-2005-1001Search in Google Scholar
[17] Gholivand, K., Shariatinia, Z., Yaghmaian, F., & Faramarzpour, H. (2006). Substituent effects on the spectroscopic and structural parameters of several new 1,3,2-diazaphosphorinanes. Syntheses, spectroscopic characterization, and X-ray crystallography. Bulletin of the Chemical Society of Japan, 79, 1604–1606. http://dx.doi.org/10.1246/bcsj.79.160410.1246/bcsj.79.1604Search in Google Scholar
[18] Hall, C. R., Inch, T. D., Pottage, C., Williams, N. E., Campbell, M. M., & Kerr, P. F. (1983). Use of carbohydrate derivatives for studies of phosphorus stereochemistry. Part 8. Preparation and some reactions of 1,3,2-oxazaphospholidine-2-ones and -2-thiones derived from 2-deoxy-3,4,6-tri-O-methyl-2-methylamino-D-glucopyranose. Journal of the Chemical Society, Perkin Transactions 1, 1983, 1967–1975. DOI: 10.1039/P19830001967. http://dx.doi.org/10.1039/p1983000196710.1039/p19830001967Search in Google Scholar
[19] Khaikin, L. S., Grikina, O. E., Vilkov, L. V., & Boggs, J.E. (1988). Structure of 1,2,3-diazaphosphole and several of its derivatives. Use of the results of nonempirical quantum chemical calculations in the electron diffraction investigation of 2-acetyl-5-methyl- and 5-methyl-2-phenyl-1,2,3-diazaphospholes. Journal of Structural Chemistry, 28, 607–611. DOI: 10.1007/BF00749603. http://dx.doi.org/10.1007/BF0074960310.1007/BF00749603Search in Google Scholar
[20] Kim, H., Nguyen, Y., Yen, C. P.-H., Chagal, L., Lough, A.J., Kim, B. M., & Chin, J. (2008). Stereospecific synthesis of C 2 symmetric diamines from the mother diamine by resonance-assisted hydrogen-bond directed diaza-Cope rearrangement. Journal of the American Chemical Society, 130, 12184–12191. DOI: 10.1021/ja803951u. http://dx.doi.org/10.1021/ja803951u10.1021/ja803951uSearch in Google Scholar
[21] Kranz, M., Denmark, S. E., Swiss, K. A., & Wilson, S. R. (1996). An ab initio study of the P-C bond rotation in phosphoryl- and thiophosphoryl-stabilized carbanions: Fiveand six-membered heterocycles. The Journal of Organic Chemistry, 61, 8551–8563. DOI: 10.1021/jo9602783. http://dx.doi.org/10.1021/jo960278310.1021/jo9602783Search in Google Scholar
[22] Lucet, D., Le Gall, T., & Mioskowski, C. (1998). The chemistry of vicinal diamines. Angewandte Chemie International Edition, 37, 2580–2627. DOI: 10.1002/(SICI)1521-3773(19981016)37:19<2580::AID-ANIE2580>3.0.CO;2-L. http://dx.doi.org/10.1002/(SICI)1521-3773(19981016)37:19<2580::AID-ANIE2580>3.0.CO;2-L10.1002/(SICI)1521-3773(19981016)37:19<2580::AID-ANIE2580>3.0.CO;2-LSearch in Google Scholar
[23] Nielsen, J., & Dahl, O. (1984). Stereochemistry of substitution at trico-ordinate phosphorus. Journal of the Chemical Society, Perkin Transactions 2, 1984, 553–558. DOI: 10.1039/P29840000553. 10.1039/p29840000553Search in Google Scholar
[24] Nifantiev, E. E., Sorokina, S. F., Borisenko, A. A., Zavalishina, A. I., & Vorobjeva, L. A. (1981). Cyclic organic derivatives of hypophosphorous acid. Tetrahedron, 37, 3183–3194. DOI: 10.1016/S0040-4020(01)98852-0. http://dx.doi.org/10.1016/S0040-4020(01)98852-010.1016/S0040-4020(01)98852-0Search in Google Scholar
[25] Olson, D. E., & Du Bois, J. (2008). Catalytic C-H amination for the preparation of substituted 1,2-diamines. Journal of the American Chemical Society, 130, 11248–11249. DOI: 10.1021/ja803344v. http://dx.doi.org/10.1021/ja803344v10.1021/ja803344vSearch in Google Scholar
[26] Parker, D. (1991). NMR determination of enantiomeric purity. Chemical Reviews, 91, 1441–1457. DOI: 10.1021/cr00007a009. http://dx.doi.org/10.1021/cr00007a00910.1021/cr00007a009Search in Google Scholar
[27] Peyronel, J. F., Samuel, O., & Fiaud, J. C. (1987). New chiral bicyclic phosphoramides derived from (L)-glutamic acid. The Journal of Organic Chemistry, 52, 5320–5325. DOI: 10.1021/jo00233a004. http://dx.doi.org/10.1021/jo00233a00410.1021/jo00233a004Search in Google Scholar
[28] Saibabu Kotti, S. R. S., Timmons, C., & Li, G. (2006). Vicinal diamino functionalities as privileged structural elements in biologically active compounds and exploitation of their synthetic chemistry. Chemical Biology & Drug Design, 67, 101–114. DOI: 10.1111/j.1747-0285.2006.00347.x. http://dx.doi.org/10.1111/j.1747-0285.2006.00347.x10.1111/j.1747-0285.2006.00347.xSearch in Google Scholar
[29] Setzer, W. N., Black, B. G., Hovanes, B. A., & Hubbard, J. L. (1989). Conformational analysis of 1,3,2-oxazaphospholanes derived from ephedrine and pseudoephedrine. The Journal of Organic Chemistry, 54, 1709–1713. DOI: 10.1021/jo00268a038. http://dx.doi.org/10.1021/jo00268a03810.1021/jo00268a038Search in Google Scholar
[30] Topacli, C., & Topacli, A. (2003). Ab initio calculations and vibrational structure of sulfanilamide. Journal of Molecular Structure, 644, 145–150. DOI: 10.1016/S0022-2860(02)00473-8. http://dx.doi.org/10.1016/S0022-2860(02)00473-810.1016/S0022-2860(02)00473-8Search in Google Scholar
[31] Varghese, H. T., Panicker, C. Y., & Philip, D. (2006). Vibrational spectroscopic studies and ab initio calculations of sulfanilamide. Spectrochimica Acta Part A, 65, 155–158. DOI: 10.1016/j.saa.2005.09.040. http://dx.doi.org/10.1016/j.saa.2005.09.04010.1016/j.saa.2005.09.040Search in Google Scholar PubMed
[32] Viso, A., Fernández de la Pradilla, R., García, A., & Flores, A. (2005). α,β-Diamino acids: Biological significance and synthetic approaches. Chemical Reviews, 105, 3167–3196. DOI: 10.1021/cr0406561. http://dx.doi.org/10.1021/cr040656110.1021/cr0406561Search in Google Scholar PubMed
[33] Wang, B., Du, H. F., & Shi, Y. (2008). A palladiumcatalyzed dehydrogenative diamination of terminal olefins. Angewandte Chemie International Edition, 47, 8224–8227. DOI: 10.1002/anie.200803184. http://dx.doi.org/10.1002/anie.20080318410.1002/anie.200803184Search in Google Scholar PubMed PubMed Central
[34] Warnat, K. (1941). Sulphanilamide phosphoric acid derivative and process for the manufacture thereof. U.S. Patent No.2245539. Washington, D.C., USA: U.S. Patent and Trademark Office. Search in Google Scholar
[35] Zalán, Z., Martinek, T. A., Lázár, L., & Fülöp, F. (2003). Synthesis and conformational analysis of 1,3,2-diazaphosphorino [6,1-a]isoquinolines, a new ring system. Tetrahedron, 59, 9117–9125. DOI: 10.1016/j.tet.2003.09.062. http://dx.doi.org/10.1016/j.tet.2003.09.06210.1016/j.tet.2003.09.062Search in Google Scholar
© 2011 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- 5th conference on membrane science and technology PERMEA 2010
- A procedure for the determination of dichloromethane and tetrachloroethene in water using pervaporation and gas chromatography
- Modeling of diffusive transport of benzoic acid through a liquid membrane
- Comparison of ceramic capillary membrane and ceramic tubular membrane with inserted static mixer
- New approach to regeneration of an ionic liquid containing solvent by molecular distillation
- Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane
- Determination of carbon in solidified sodium coolant using new ICP-OES methods
- Interpretation of interactions of halogenated hydrocarbons with modified silica adsorbent coated with 3-benzylketoimine group silane
- Adaptive nonlinear control of a continuous stirred tank reactor
- Anaerobic baffled reactor treatment of biodiesel-processing wastewater with high strength of methanol and glycerol: reactor performance and biogas production
- Analysis of streptolydigin degradation and conversion in cultural supernatants of Streptomyces lydicus AS 4.2501
- Spectroscopic and magnetic evidence of coordination properties of bioactive diethyl (pyridin-4-ylmethyl)phosphate ligand with chloride transition-metal ions
- Microstructure and properties of polyhydroxybutyrate-calcium phosphate cement composites
- Intercalation of basic amino acids into layered zirconium proline-N-methylphosphonate phosphate
- Effect of sol-gel preparation method on particle morphology in pure and nanocomposite PZT thin films
- Synthesis, spectroscopic and configurational study, and ab initio calculations of new diazaphospholanes
- Synthesis and in vitro antimicrobial activity of new 3-(2-morpholinoquinolin-3-yl) substituted acrylonitrile and propanenitrile derivatives
- Silicon-based thiourea-mediated and microwave-assisted thio-Michael addition under solvent-free reaction conditions
- One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst
- Comparison and optimisation of biodiesel production from Jatropha curcas oil using supercritical methyl acetate and methanol
- Determination of photoredox properties of individual kinetically labile complexes in equilibrium systems
- A halogenated coumarin from Ficus krishnae
- 4β-Isocyanopodophyllotoxins: valuable precursors for the synthesis of new podophyllotoxin analogues
- Environmentally benign one-pot synthesis and antimicrobial activity of 1-methyl-2,6-diarylpiperidin-4-ones
Articles in the same Issue
- 5th conference on membrane science and technology PERMEA 2010
- A procedure for the determination of dichloromethane and tetrachloroethene in water using pervaporation and gas chromatography
- Modeling of diffusive transport of benzoic acid through a liquid membrane
- Comparison of ceramic capillary membrane and ceramic tubular membrane with inserted static mixer
- New approach to regeneration of an ionic liquid containing solvent by molecular distillation
- Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane
- Determination of carbon in solidified sodium coolant using new ICP-OES methods
- Interpretation of interactions of halogenated hydrocarbons with modified silica adsorbent coated with 3-benzylketoimine group silane
- Adaptive nonlinear control of a continuous stirred tank reactor
- Anaerobic baffled reactor treatment of biodiesel-processing wastewater with high strength of methanol and glycerol: reactor performance and biogas production
- Analysis of streptolydigin degradation and conversion in cultural supernatants of Streptomyces lydicus AS 4.2501
- Spectroscopic and magnetic evidence of coordination properties of bioactive diethyl (pyridin-4-ylmethyl)phosphate ligand with chloride transition-metal ions
- Microstructure and properties of polyhydroxybutyrate-calcium phosphate cement composites
- Intercalation of basic amino acids into layered zirconium proline-N-methylphosphonate phosphate
- Effect of sol-gel preparation method on particle morphology in pure and nanocomposite PZT thin films
- Synthesis, spectroscopic and configurational study, and ab initio calculations of new diazaphospholanes
- Synthesis and in vitro antimicrobial activity of new 3-(2-morpholinoquinolin-3-yl) substituted acrylonitrile and propanenitrile derivatives
- Silicon-based thiourea-mediated and microwave-assisted thio-Michael addition under solvent-free reaction conditions
- One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst
- Comparison and optimisation of biodiesel production from Jatropha curcas oil using supercritical methyl acetate and methanol
- Determination of photoredox properties of individual kinetically labile complexes in equilibrium systems
- A halogenated coumarin from Ficus krishnae
- 4β-Isocyanopodophyllotoxins: valuable precursors for the synthesis of new podophyllotoxin analogues
- Environmentally benign one-pot synthesis and antimicrobial activity of 1-methyl-2,6-diarylpiperidin-4-ones