Startseite Synthesis, spectroscopic and configurational study, and ab initio calculations of new diazaphospholanes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis, spectroscopic and configurational study, and ab initio calculations of new diazaphospholanes

  • Khodayar Gholivand EMAIL logo und Fatemeh Ghaziani
Veröffentlicht/Copyright: 23. Juli 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

New 2-substituted diazaphospholane-2-oxides (I-III, V-VIII) and diazaphosphorinane-2-oxide (IV) were synthesised and characterised by 1H, 13C, and 31P NMR, IR spectroscopy, and elemental analysis. The presence of chiral diamino groups in compounds II and V–VIII gives rise to various diastereomers so that the 31P{1H} NMR spectra demonstrated three and two peaks with different ratios, respectively. Also, the 1H and 13C{1H} NMR spectra of compounds II and V–VIII revealed three and two sets of signals for the related conformers (diastereomers). Interestingly, the 31P NMR spectrum of V in D2O indicated a great upfield shift (Δδ = 19.0) for 31P relative to the value obtained in DMSO-d6 (solvent effect). The two signals in V split further to three signals in the presence of β-cyclodextrin. Moreover, conformational analysis of diazaphospholane V was studied by ab initio calculations at the HF and B3LYP levels of theory using the Gaussian 98 program. Results indicated that among four suggested diastereomers (C1–C4) of V, C1 and C3 containing methyl group in the equatorial position are the most stable forms.

[1] Amirkhanov, V. M., Ovchynnikov, V. A., Glowiak, T., & Kozlowski, H. (1997). Crystal and molecular structures of N,N′-diphenyl-N″-trichloroacetyl-phosphorictriamide and N,N′-tetraethyl-N″-benzoylphosphorictriamide. The effect of various substituents on the structural parameters of the [C(O)N(H)P(O)] moiety. Zeitschrift für Naturforschung B - A Journal of Chemical Sciences, 52, 1331–1336. Suche in Google Scholar

[2] Berlicki, Ł., Rudzińska, E., & Kafarski, P. (2003). Enantiodifferentiation of aminophosphonic and aminophosphinic acids with α- and β-cyclodextrins. Tetrahedron: Asymmetry, 14, 1535–1539. DOI: 10.1016/S0957-4166(03)00273-8. http://dx.doi.org/10.1016/S0957-4166(03)00273-810.1016/S0957-4166(03)00273-8Suche in Google Scholar

[3] Corbridge, D. E. C. (1995). Phosphorus: An outline of its chemistry, biochemistry, and technology (5th ed., pp. 55, 57). Amsterdam, The Netherlands: Elsevier. Suche in Google Scholar

[4] De la Cruz, A., Koeller, K. J., Rath, N. P., Spilling, C. D., & Vasconcelos, I. C. F. (1998). The synthesis, structure and properties of diazaphospholes: Reagents and ligands for asymmetric synthesis. Tetrahedron, 54, 10513–10524. DOI: 10.1016/S0040-4020(98)00502-X. http://dx.doi.org/10.1016/S0040-4020(98)00502-X10.1016/S0040-4020(98)00502-XSuche in Google Scholar

[5] Denmark, S. E., Miller, P. C., & Wilson, S. R. (1991). Configuration, conformation, and colligative properties of a phosphorus-stabilized anion. Journal of the American Chemical Society, 113, 1468–1470. DOI: 10.1021/ja00004a089. http://dx.doi.org/10.1021/ja00004a08910.1021/ja00004a089Suche in Google Scholar

[6] Devillers, J., Navech, J., & Albrand, J.-P. (1971). Heterocycles contenant du phosphore—V. Analyse des spectres de resonance magnetique protonique des oxo-2 methoxy ou phénoxy-2, methyl-3, oxazaphospholanes-1,3,2: Exemples de spectres du type ABXY. Organic Magnetic Resonance, 3, 177–186. DOI: 10.1002/mrc.1270030203. http://dx.doi.org/10.1002/mrc.127003020310.1002/mrc.1270030203Suche in Google Scholar

[7] Du, H., Zhao, B., & Shi, Y. (2008). Catalytic asymmetric allylic and homoallylic diamination of terminal olefins via formal C-H activation. Journal of the American Chemical Society, 130, 8590–8591. DOI: 10.1021/ja8027394. http://dx.doi.org/10.1021/ja802739410.1021/ja8027394Suche in Google Scholar

[8] Dutasta, J. P., Esteban-Calderon, C., Tinant, B., & Declercq, J.-P. (1990). Structure of bis(1,3-di-o-anisyl-2-thioxo-1,3,2λ 5-diazaphosphorinan-2-yl) oxide. Acta Crystallographica Section C: Crystal Structure Communications, C46, 68–71. DOI: 10.1107/S0108270189005172. http://dx.doi.org/10.1107/S010827018900517210.1107/S0108270189005172Suche in Google Scholar

[9] Dutasta, J. P., Grand, A., Guimares, A. C., & Robert, J. B. (1979). Dioxaphospholanes-1,3,2, dimerisation, obtention de composes heterocycliques phosphores et oxygenes a dix chainons: tetra-oxa-1,3,6,8 diphosphecanes-2. Tetrahedron, 35, 197–207. DOI: 10.1016/S0040-4020(01)99482-7. http://dx.doi.org/10.1016/S0040-4020(01)99482-710.1016/S0040-4020(01)99482-7Suche in Google Scholar

[10] Gholivand, K., Oroujzadeh, N., Erben, M. F., & Della Védova, C. O. (2009a). Synthesis, spectroscopy, computational study and prospective biological activity of two novel 1,3,2-diazaphospholidine-2,4,5-triones. Polyhedron, 28, 541–547. DOI: 10.1016/j.poly.2008.11.024. http://dx.doi.org/10.1016/j.poly.2008.11.02410.1016/j.poly.2008.11.024Suche in Google Scholar

[11] Gholivand, K., Pourayoubi, M., Farshadian, S., Molani, S., & Shariatinia, Z. (2005a). Synthesis and crystal structure of 5,5-dimethyl-2-(p-methylanilino)-2-oxo-1,3,2-diazaphosphorinane. Analytical Sciences: X-ray Structure Analysis Online, 21, x55–x56. http://dx.doi.org/10.2116/analscix.21.x5510.2116/analscix.21.x55Suche in Google Scholar

[12] Gholivand, K., Pourayoubi, M., & Shariatinia, Z. (2007a). 2,3J(P,X) [X = H, C] coupling constants dependency to the ring size, hybridization and substituents in new diazaphospholes and diazaphosphorinanes, NMR and X-ray crystallography studies. Polyhedron, 26, 837–844. DOI: 10.1016/j.poly.2006.09.092. http://dx.doi.org/10.1016/j.poly.2006.09.09210.1016/j.poly.2006.09.092Suche in Google Scholar

[13] Gholivand, K., Shariatinia, Z., Afshar, F., Faramarzpour, H., & Yaghmaian, F. (2007b). New 1,3,2-diazaphosphorinanes; syntheses, spectroscopic characterization, X-ray crystallography and ab initio calculations. Main Group Chemistry, 6, 231–248. DOI: 10.1080/10241220801994742. http://dx.doi.org/10.1080/1024122080199474210.1080/10241220801994742Suche in Google Scholar

[14] Gholivand, K., Shariatinia, Z., Ansar, S., Mashhadi, S. M., & Daeepour, F. (2009b). The first naphthodiazaphosphorinane in the solid phase; syntheses, spectroscopic studies and X-ray crystallography of some new 1,3,2-diheterophosphorus compounds. Structural Chemistry, 20, 481–488. DOI: 10.1007/s11224-009-9445-9. http://dx.doi.org/10.1007/s11224-009-9445-910.1007/s11224-009-9445-9Suche in Google Scholar

[15] Gholivand, K., Shariatinia, Z., Mahzouni, H. R., & Amiri, S. (2007c). Phosphorus heterocycles: synthesis, spectroscopic study and X-ray crystallography of some new diazaphosphorinanes. Structural Chemistry, 18, 653–660. DOI: 10.1007/s11224-007-9197-3. http://dx.doi.org/10.1007/s11224-007-9197-310.1007/s11224-007-9197-3Suche in Google Scholar

[16] Gholivand, K., Shariatinia, Z., Pourayoubi, M., & Farshadian, S. (2005b). Syntheses and spectroscopic study of some new diazaphospholes and diazaphosphorinanes. Crystal structure of . Zeitschrift für Naturforschung B - A Journal of Chemical Sciences, 60, 1021–1026. 10.1515/znb-2005-1001Suche in Google Scholar

[17] Gholivand, K., Shariatinia, Z., Yaghmaian, F., & Faramarzpour, H. (2006). Substituent effects on the spectroscopic and structural parameters of several new 1,3,2-diazaphosphorinanes. Syntheses, spectroscopic characterization, and X-ray crystallography. Bulletin of the Chemical Society of Japan, 79, 1604–1606. http://dx.doi.org/10.1246/bcsj.79.160410.1246/bcsj.79.1604Suche in Google Scholar

[18] Hall, C. R., Inch, T. D., Pottage, C., Williams, N. E., Campbell, M. M., & Kerr, P. F. (1983). Use of carbohydrate derivatives for studies of phosphorus stereochemistry. Part 8. Preparation and some reactions of 1,3,2-oxazaphospholidine-2-ones and -2-thiones derived from 2-deoxy-3,4,6-tri-O-methyl-2-methylamino-D-glucopyranose. Journal of the Chemical Society, Perkin Transactions 1, 1983, 1967–1975. DOI: 10.1039/P19830001967. http://dx.doi.org/10.1039/p1983000196710.1039/p19830001967Suche in Google Scholar

[19] Khaikin, L. S., Grikina, O. E., Vilkov, L. V., & Boggs, J.E. (1988). Structure of 1,2,3-diazaphosphole and several of its derivatives. Use of the results of nonempirical quantum chemical calculations in the electron diffraction investigation of 2-acetyl-5-methyl- and 5-methyl-2-phenyl-1,2,3-diazaphospholes. Journal of Structural Chemistry, 28, 607–611. DOI: 10.1007/BF00749603. http://dx.doi.org/10.1007/BF0074960310.1007/BF00749603Suche in Google Scholar

[20] Kim, H., Nguyen, Y., Yen, C. P.-H., Chagal, L., Lough, A.J., Kim, B. M., & Chin, J. (2008). Stereospecific synthesis of C 2 symmetric diamines from the mother diamine by resonance-assisted hydrogen-bond directed diaza-Cope rearrangement. Journal of the American Chemical Society, 130, 12184–12191. DOI: 10.1021/ja803951u. http://dx.doi.org/10.1021/ja803951u10.1021/ja803951uSuche in Google Scholar

[21] Kranz, M., Denmark, S. E., Swiss, K. A., & Wilson, S. R. (1996). An ab initio study of the P-C bond rotation in phosphoryl- and thiophosphoryl-stabilized carbanions: Fiveand six-membered heterocycles. The Journal of Organic Chemistry, 61, 8551–8563. DOI: 10.1021/jo9602783. http://dx.doi.org/10.1021/jo960278310.1021/jo9602783Suche in Google Scholar

[22] Lucet, D., Le Gall, T., & Mioskowski, C. (1998). The chemistry of vicinal diamines. Angewandte Chemie International Edition, 37, 2580–2627. DOI: 10.1002/(SICI)1521-3773(19981016)37:19<2580::AID-ANIE2580>3.0.CO;2-L. http://dx.doi.org/10.1002/(SICI)1521-3773(19981016)37:19<2580::AID-ANIE2580>3.0.CO;2-L10.1002/(SICI)1521-3773(19981016)37:19<2580::AID-ANIE2580>3.0.CO;2-LSuche in Google Scholar

[23] Nielsen, J., & Dahl, O. (1984). Stereochemistry of substitution at trico-ordinate phosphorus. Journal of the Chemical Society, Perkin Transactions 2, 1984, 553–558. DOI: 10.1039/P29840000553. 10.1039/p29840000553Suche in Google Scholar

[24] Nifantiev, E. E., Sorokina, S. F., Borisenko, A. A., Zavalishina, A. I., & Vorobjeva, L. A. (1981). Cyclic organic derivatives of hypophosphorous acid. Tetrahedron, 37, 3183–3194. DOI: 10.1016/S0040-4020(01)98852-0. http://dx.doi.org/10.1016/S0040-4020(01)98852-010.1016/S0040-4020(01)98852-0Suche in Google Scholar

[25] Olson, D. E., & Du Bois, J. (2008). Catalytic C-H amination for the preparation of substituted 1,2-diamines. Journal of the American Chemical Society, 130, 11248–11249. DOI: 10.1021/ja803344v. http://dx.doi.org/10.1021/ja803344v10.1021/ja803344vSuche in Google Scholar

[26] Parker, D. (1991). NMR determination of enantiomeric purity. Chemical Reviews, 91, 1441–1457. DOI: 10.1021/cr00007a009. http://dx.doi.org/10.1021/cr00007a00910.1021/cr00007a009Suche in Google Scholar

[27] Peyronel, J. F., Samuel, O., & Fiaud, J. C. (1987). New chiral bicyclic phosphoramides derived from (L)-glutamic acid. The Journal of Organic Chemistry, 52, 5320–5325. DOI: 10.1021/jo00233a004. http://dx.doi.org/10.1021/jo00233a00410.1021/jo00233a004Suche in Google Scholar

[28] Saibabu Kotti, S. R. S., Timmons, C., & Li, G. (2006). Vicinal diamino functionalities as privileged structural elements in biologically active compounds and exploitation of their synthetic chemistry. Chemical Biology & Drug Design, 67, 101–114. DOI: 10.1111/j.1747-0285.2006.00347.x. http://dx.doi.org/10.1111/j.1747-0285.2006.00347.x10.1111/j.1747-0285.2006.00347.xSuche in Google Scholar

[29] Setzer, W. N., Black, B. G., Hovanes, B. A., & Hubbard, J. L. (1989). Conformational analysis of 1,3,2-oxazaphospholanes derived from ephedrine and pseudoephedrine. The Journal of Organic Chemistry, 54, 1709–1713. DOI: 10.1021/jo00268a038. http://dx.doi.org/10.1021/jo00268a03810.1021/jo00268a038Suche in Google Scholar

[30] Topacli, C., & Topacli, A. (2003). Ab initio calculations and vibrational structure of sulfanilamide. Journal of Molecular Structure, 644, 145–150. DOI: 10.1016/S0022-2860(02)00473-8. http://dx.doi.org/10.1016/S0022-2860(02)00473-810.1016/S0022-2860(02)00473-8Suche in Google Scholar

[31] Varghese, H. T., Panicker, C. Y., & Philip, D. (2006). Vibrational spectroscopic studies and ab initio calculations of sulfanilamide. Spectrochimica Acta Part A, 65, 155–158. DOI: 10.1016/j.saa.2005.09.040. http://dx.doi.org/10.1016/j.saa.2005.09.04010.1016/j.saa.2005.09.040Suche in Google Scholar PubMed

[32] Viso, A., Fernández de la Pradilla, R., García, A., & Flores, A. (2005). α,β-Diamino acids: Biological significance and synthetic approaches. Chemical Reviews, 105, 3167–3196. DOI: 10.1021/cr0406561. http://dx.doi.org/10.1021/cr040656110.1021/cr0406561Suche in Google Scholar PubMed

[33] Wang, B., Du, H. F., & Shi, Y. (2008). A palladiumcatalyzed dehydrogenative diamination of terminal olefins. Angewandte Chemie International Edition, 47, 8224–8227. DOI: 10.1002/anie.200803184. http://dx.doi.org/10.1002/anie.20080318410.1002/anie.200803184Suche in Google Scholar PubMed PubMed Central

[34] Warnat, K. (1941). Sulphanilamide phosphoric acid derivative and process for the manufacture thereof. U.S. Patent No.2245539. Washington, D.C., USA: U.S. Patent and Trademark Office. Suche in Google Scholar

[35] Zalán, Z., Martinek, T. A., Lázár, L., & Fülöp, F. (2003). Synthesis and conformational analysis of 1,3,2-diazaphosphorino [6,1-a]isoquinolines, a new ring system. Tetrahedron, 59, 9117–9125. DOI: 10.1016/j.tet.2003.09.062. http://dx.doi.org/10.1016/j.tet.2003.09.06210.1016/j.tet.2003.09.062Suche in Google Scholar

Published Online: 2011-7-23
Published in Print: 2011-10-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. 5th conference on membrane science and technology PERMEA 2010
  2. A procedure for the determination of dichloromethane and tetrachloroethene in water using pervaporation and gas chromatography
  3. Modeling of diffusive transport of benzoic acid through a liquid membrane
  4. Comparison of ceramic capillary membrane and ceramic tubular membrane with inserted static mixer
  5. New approach to regeneration of an ionic liquid containing solvent by molecular distillation
  6. Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane
  7. Determination of carbon in solidified sodium coolant using new ICP-OES methods
  8. Interpretation of interactions of halogenated hydrocarbons with modified silica adsorbent coated with 3-benzylketoimine group silane
  9. Adaptive nonlinear control of a continuous stirred tank reactor
  10. Anaerobic baffled reactor treatment of biodiesel-processing wastewater with high strength of methanol and glycerol: reactor performance and biogas production
  11. Analysis of streptolydigin degradation and conversion in cultural supernatants of Streptomyces lydicus AS 4.2501
  12. Spectroscopic and magnetic evidence of coordination properties of bioactive diethyl (pyridin-4-ylmethyl)phosphate ligand with chloride transition-metal ions
  13. Microstructure and properties of polyhydroxybutyrate-calcium phosphate cement composites
  14. Intercalation of basic amino acids into layered zirconium proline-N-methylphosphonate phosphate
  15. Effect of sol-gel preparation method on particle morphology in pure and nanocomposite PZT thin films
  16. Synthesis, spectroscopic and configurational study, and ab initio calculations of new diazaphospholanes
  17. Synthesis and in vitro antimicrobial activity of new 3-(2-morpholinoquinolin-3-yl) substituted acrylonitrile and propanenitrile derivatives
  18. Silicon-based thiourea-mediated and microwave-assisted thio-Michael addition under solvent-free reaction conditions
  19. One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst
  20. Comparison and optimisation of biodiesel production from Jatropha curcas oil using supercritical methyl acetate and methanol
  21. Determination of photoredox properties of individual kinetically labile complexes in equilibrium systems
  22. A halogenated coumarin from Ficus krishnae
  23. 4β-Isocyanopodophyllotoxins: valuable precursors for the synthesis of new podophyllotoxin analogues
  24. Environmentally benign one-pot synthesis and antimicrobial activity of 1-methyl-2,6-diarylpiperidin-4-ones
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0047-9/html
Button zum nach oben scrollen