Startseite Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane

  • Ján Marták EMAIL logo , Štefan Schlosser und Marek Blahušiak
Veröffentlicht/Copyright: 23. Juli 2011
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Transport of butyric acid (BA) through a supported liquid membrane (SLM) containing phosphonium ionic liquid (IL) Cyphos IL-104 and dodecane occurs by two mechanisms. The first is related to the physical solubility of undissociated acid in dodecane in the form of a monomer or dimer and the second to the reactive extraction of acid by IL. Although the model of pertraction indicates that increasing the mean concentration of acid in the feed, c F,lmv, increases the participation of pertraction based on the physical solubility; in the tested range of c F,lmv from 0 kmol m−3 to 0.45 kmol m−3 it does not play an important role and at the highest c F,lmv value, less than 10 % of the overall BA transport were achieved. The presence of IL in SLM considerably increases the value of the overall mass transfer coefficient in pertraction at low BA concentrations. However, at c F,lmv > 0.4 kmol m−3 its values are similar for SLMs with and without IL. Compared to lactic acid, the pertraction of BA through the same SLM is about five times faster. Reactive transport of BA is connected with the back transport of water via reverse micelles decomposition and formation on the extraction and stripping interfaces.

[1] Blahušiak, M., Schlosser, Š., & Marták, J. (2011). Extraction of butyric acid by a solvent impregnated resin containing ionic liquid. Reactive and Functional Polymers, 71, 736–744. doi: 10.1016/j.reactfunctpolym.2011.04.002. http://dx.doi.org/10.1016/j.reactfunctpolym.2011.04.00210.1016/j.reactfunctpolym.2011.04.002Suche in Google Scholar

[2] Blahušiak, M., Schlosser, Š., & Marták, J. (2010). Simulation of a hybrid fermentation-separation process for production of butyric acid. Chemical Papers, 64, 213–222. DOI: 10.2478/s11696-009-0114-7. http://dx.doi.org/10.2478/s11696-009-0114-710.2478/s11696-009-0114-7Suche in Google Scholar

[3] Bradaric, C. J., Downard, A., Kennedy, C., Robertson, A. J. & Zhou, Y. (2003). Industrial preparation of phosphonium ionic liquids. Green Chemistry, 5, 143–152. DOI: 10.1039/b209734f. http://dx.doi.org/10.1039/b209734f10.1039/b209734fSuche in Google Scholar

[4] Cull, S. G., Holbrey, J. D., Vargas-Mora, V., Seddon, K. R., & Lye, G. J. (2000). Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnology and Bioengineering, 69, 227–233. DOI: 10.1002/(SICI)1097-0290(20000720). http://dx.doi.org/10.1002/(SICI)1097-0290(20000720)69:2<227::AID-BIT12>3.0.CO;2-010.1002/(SICI)1097-0290(20000720)69:2<227::AID-BIT12>3.0.CO;2-0Suche in Google Scholar

[5] Dietz, M. L. (2006). Ionic liquids as extraction solvents: Where do we stand? Separation Science and Technology, 41, 2047–2063. DOI: 10.1080/01496390600743144. http://dx.doi.org/10.1080/0149639060074314410.1080/01496390600743144Suche in Google Scholar

[6] Huddleston, J. G., & Rogers, R. D. (1998). Room temperature ionic liquids as novel media for ‘clean’ liquid-liquid extraction. Chemical Communications, 1998, 1765–1766. DOI: 10.1039/A803999B. http://dx.doi.org/10.1039/a803999b10.1039/A803999BSuche in Google Scholar

[7] Iversen, S. B., Bhatia, V. K., Dam-Johansen, K., & Jonsson, G. (1997). Characterization of microporous membranes for use in membrane contactor. Journal of Membrane Science, 130, 205–217. DOI: 10.1016/S0376-7388(97)00026-4. http://dx.doi.org/10.1016/S0376-7388(97)00026-410.1016/S0376-7388(97)00026-4Suche in Google Scholar

[8] Kertész, R., Schlosser, Š., & Šimo, M. (2004). Mass-transfer characteristics of a spiral-channel SLM module in pertraction of phenylalanine. Desalination, 163, 103–117. DOI: 10.1016/S0011-9164(04)90182-8. http://dx.doi.org/10.1016/S0011-9164(04)90182-810.1016/S0011-9164(04)90182-8Suche in Google Scholar

[9] Kubišová, Ľ., Sabolová, E., Schlosser, Š., Marták, J., & Kertész, R. (2002). Membrane based solvent extraction and stripping of a heterocyclic carboxylic acid in hollow fiber contactors. Desalination, 148, 205–211. DOI: 10.1016/S0011-9164(02)00699-9. http://dx.doi.org/10.1016/S0011-9164(02)00699-910.1016/S0011-9164(02)00699-9Suche in Google Scholar

[10] Marták, J., & Schlosser, Š. (2008). Liquid-liquid equilibria of butyric acid for solvents containing a phosphonium ionic liquid. Chemical Papers, 62, 42–50. DOI: 10.2478/s11696-007-0077-5. http://dx.doi.org/10.2478/s11696-007-0077-510.2478/s11696-007-0077-5Suche in Google Scholar

[11] Marták, J., & Schlosser, Š. (2007). Extraction of lactic acid by phosphonium ionic liquids. Separation and Purification Technology, 57, 483–494. doi: 10.1016/j.seppur.2006.09.013. http://dx.doi.org/10.1016/j.seppur.2006.09.01310.1016/j.seppur.2006.09.013Suche in Google Scholar

[12] Marták, J., & Schlosser, Š. (2006). Phosphonium ionic liquids as new, reactive extractants of lactic acid. Chemical Papers, 60, 395–398. DOI: 10.2478/s11696-006-0072-2. http://dx.doi.org/10.2478/s11696-006-0072-210.2478/s11696-006-0072-2Suche in Google Scholar

[13] Marták, J., & Schlosser, Š. (2004). Ionic liquids in pertraction and extraction of organic acids. In 19th ‘Ars Separatoria’, 10–13 June 2004. Złoty Potok, Poland: University of Technology and Agriculture in Bydgoszcz. (http://www.arsseparatoria.chem.uni.torun.pl) Suche in Google Scholar

[14] Marták, J., & Schlosser, Š. (2003). New formulations of liquid membranes and solvents based on ionic liquids. In Š. Schlosser, & R. Kertész (Eds.), PERMEA 2003, 7–11 September 2003 (P6.6). Tatranské Matliare, Slovakia: Slovak Society of Chemical Engineering. Suche in Google Scholar

[15] Marták, J., Schlosser, Š., & Vlčková, S. (2008). Pertraction of lactic acid through supported liquid membranes containing phosphonium ionic liquid. Journal of Membrane Science, 318, 298–310. doi: 10.1016/j.memsci.2008.02.064. http://dx.doi.org/10.1016/j.memsci.2008.02.06410.1016/j.memsci.2008.02.064Suche in Google Scholar

[16] Matsumoto, M., Hasegawa, W., Kondo, K., Shimamura, T., & Tsuji, M. (2010). Application of supported ionic liquid membranes using a flat sheet and hollow fibers to lactic acid recovery. Desalination and Water Treatment, 14, 37–46. doi: 10.5004/dwt.2010.1009. http://dx.doi.org/10.5004/dwt.2010.100910.5004/dwt.2010.1009Suche in Google Scholar

[17] Matsumoto, M., Inomoto, Y., & Kondo, K. (2005). Selective separation of aromatic hydrocarbons through supported liquid membranes based on ionic liquids. Journal of Membrane Science, 246, 77–81. doi: 10.1016/j.memsci.2004.08.013. http://dx.doi.org/10.1016/j.memsci.2004.08.01310.1016/j.memsci.2004.08.013Suche in Google Scholar

[18] Matsumoto, M., Mochiduki, K., Fukunishi, K., & Kondo, K. (2004). Extraction of organic acids using imidazolium-based ionic liquids and their toxicity to Lactobacillus rhamnosus. Separation and Purification Technology, 40, 97–101. doi: 10.1016/j.seppur.2004.01.009. http://dx.doi.org/10.1016/j.seppur.2004.01.00910.1016/j.seppur.2004.01.009Suche in Google Scholar

[19] McFarlane, J., Ridenour, W. B., Luo, H., Hunt, R. D., DePaoli, D. W., & Ren, R. X. (2005). Room temperature ionic liquids for separating organics from produced water. Separation Science and Technology, 40, 1245–1265. doi: 10.1088/SS-200052807. http://dx.doi.org/10.1081/SS-200052807Suche in Google Scholar

[20] Noble, R. D., & Gin, D. L. (2011). Perspective on ionic liquids and ionic liquid membranes. Journal of Membrane Science, 369, 1–4. doi: 10.1016/j.memsci.2010.11.075. http://dx.doi.org/10.1016/j.memsci.2010.11.07510.1016/j.memsci.2010.11.075Suche in Google Scholar

[21] Reid, R. C., Prausnitz, J. M., & Sherwood, T. K. (1977). The properties of gases and liquids. New York, NY, USA: McGraw-Hill. Suche in Google Scholar

[22] Rogers, R. D., & Seddon, K. R. (Eds.) (2005). Ionic liquids IIIb: Fundamentals, progress, challenges, and opportunities: Transformations and processes. Washington, DC, USA: ACS. 10.1021/bk-2005-0902Suche in Google Scholar

[23] Rogers, R. D., & Seddon, K. R. (Eds.) (2003). Ionic liquids as green solvents. Progress and prospects. Washington, DC, USA: ACS. http://dx.doi.org/10.1021/bk-2003-085610.1021/bk-2003-0856Suche in Google Scholar

[24] Sabolová, E., Schlosser, Š., & Marták, J. (2001). Liquid-liquid equilibria of butyric acid in water + solvent systems with trioctylamine as extractant. Journal of Chemical and Engineering Data, 46, 735–745. DOI: 10.1021/je000323a. http://dx.doi.org/10.1021/je000323a10.1021/je000323aSuche in Google Scholar

[25] Schlosser, Š. (2009). Extractive separations in contactors with one and two immobilized L/L interfaces: Applications and perspectives. In E. Drioli, & L. Giorno (Eds.), Membrane operations. Innovative separations and transformations (pp. 513–542). Weinheim, Germany: Wiley-VCH. Suche in Google Scholar

[26] Schlosser, Š., Kertész, R., & Marták, J. (2005). Recovery and separation of organic acids by membrane-based solvent extraction and pertraction: An overview with a case study on recovery of MPCA. Separation and Purification Technology, 41, 237–266. doi: 10.1016/j.seppur.2004.07.019. http://dx.doi.org/10.1016/j.seppur.2004.07.01910.1016/j.seppur.2004.07.019Suche in Google Scholar

[27] Schlosser, Š., & Marták, J. (2009). Separation of mixtures by pertraction or membrane-based solvent extraction and new extractants. In R. Wódzki (Ed.), Membranes: Theory and practice (pp. 123–152). Toruń, Poland: Nicolaus Copernicus University. Suche in Google Scholar

[28] Visser, A. E., Swatloski, R. P., Griffin, S. T., Hartman, D. H., & Rogers, R. D. (2001a). Liquid/liquid extraction of metalions in room temperature ionic liquids. Separation Science and Technology, 36, 785–804. DOI: 10.1081/SS-100103620. http://dx.doi.org/10.1081/SS-10010362010.1081/SS-100103620Suche in Google Scholar

[29] Visser, A. E., Swatloski, R. P., Reichert, W. M., Mayton, R., Sheff, S., Wierzbicki, A., Davis, J. H., & Rogers, R. D. (2001b). Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chemical Communications, 2001, 135–136. DOI: 10.1039/B008041L. http://dx.doi.org/10.1039/b008041l10.1039/b008041lSuche in Google Scholar

[30] Wasserscheid, P., & Welton, T. (Eds.) (2008). Ionic liquids in synthesis. Weinheim, Germany: Wiley-VCH. Suche in Google Scholar

[31] Wilke, C. R., & Chang, P. (1955). Correlation of diffusion coefficients in dilute solutions. AIChE Journal, 1, 264–270. DOI: 10.1002/aic.690010222. http://dx.doi.org/10.1002/aic.69001022210.1002/aic.690010222Suche in Google Scholar

Published Online: 2011-7-23
Published in Print: 2011-10-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. 5th conference on membrane science and technology PERMEA 2010
  2. A procedure for the determination of dichloromethane and tetrachloroethene in water using pervaporation and gas chromatography
  3. Modeling of diffusive transport of benzoic acid through a liquid membrane
  4. Comparison of ceramic capillary membrane and ceramic tubular membrane with inserted static mixer
  5. New approach to regeneration of an ionic liquid containing solvent by molecular distillation
  6. Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane
  7. Determination of carbon in solidified sodium coolant using new ICP-OES methods
  8. Interpretation of interactions of halogenated hydrocarbons with modified silica adsorbent coated with 3-benzylketoimine group silane
  9. Adaptive nonlinear control of a continuous stirred tank reactor
  10. Anaerobic baffled reactor treatment of biodiesel-processing wastewater with high strength of methanol and glycerol: reactor performance and biogas production
  11. Analysis of streptolydigin degradation and conversion in cultural supernatants of Streptomyces lydicus AS 4.2501
  12. Spectroscopic and magnetic evidence of coordination properties of bioactive diethyl (pyridin-4-ylmethyl)phosphate ligand with chloride transition-metal ions
  13. Microstructure and properties of polyhydroxybutyrate-calcium phosphate cement composites
  14. Intercalation of basic amino acids into layered zirconium proline-N-methylphosphonate phosphate
  15. Effect of sol-gel preparation method on particle morphology in pure and nanocomposite PZT thin films
  16. Synthesis, spectroscopic and configurational study, and ab initio calculations of new diazaphospholanes
  17. Synthesis and in vitro antimicrobial activity of new 3-(2-morpholinoquinolin-3-yl) substituted acrylonitrile and propanenitrile derivatives
  18. Silicon-based thiourea-mediated and microwave-assisted thio-Michael addition under solvent-free reaction conditions
  19. One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst
  20. Comparison and optimisation of biodiesel production from Jatropha curcas oil using supercritical methyl acetate and methanol
  21. Determination of photoredox properties of individual kinetically labile complexes in equilibrium systems
  22. A halogenated coumarin from Ficus krishnae
  23. 4β-Isocyanopodophyllotoxins: valuable precursors for the synthesis of new podophyllotoxin analogues
  24. Environmentally benign one-pot synthesis and antimicrobial activity of 1-methyl-2,6-diarylpiperidin-4-ones
Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0069-3/html
Button zum nach oben scrollen