Abstract
Synthesis of α-aminophosphonate derivatives via the Kabachnik–Fields reaction is described using 1-(6-hydroxy-2-isopropenyl-1-benzofuran-yl)-1-ethanone, extracted from rhizomes of Petasites hybridus, primary amines and trialkyl phosphites in the presence of ZnO nanoparticles in water at room temperature. This procedure has advantages such as using natural products as precursors, employing water as a green solvent, good yields and easy separation of products.
Acknowledgment
We gratefully acknowledge financial support from the Islamic Azad University of Ardabil.
References
[1] L. Pan, X. H. Liu, Y. X. Shi, B. L. Wang, S. H. Wang, B. J. Li, Z. M. Li, Chem. Res. Chin. Univers.2010, 26, 389.Suche in Google Scholar
[2] D. Y. Hu, D. D. Wan, S. Yang, B. A. Song, P. S. Bhadury, L. H. Jin, K. Yan, F. Liu, Z. Chen, W. Xue, J. Agric. Food Chem.2008, 56, 998.10.1021/jf072394kSuche in Google Scholar PubMed
[3] S. Michael, C. Jay, Z. Ding, S. Aaron, D. C. Atasi, D. Siddhartha, E. P. Stenen, Org. Lett.2010, 12, 4596.10.1021/ol101913tSuche in Google Scholar PubMed PubMed Central
[4] I. El Sayed, S. M. El Kosy, M. F. Abdel Magied, M. A. Hamed, A. Abdel Aleem El Gokha, M. M. Abd El-Sattar, J. Am. Sci.2011, 7, 604.Suche in Google Scholar
[5] S. Bai, B. A. Song, P. S. Bhadury, S. Yang, D. Y. Hu, W. Xue, Chin. J. Chem.2011, 29, 109.10.1002/cjoc.201190035Suche in Google Scholar
[6] M. I. Kabachnik, T. Y. Medved, Akad. Nauk. SSSR.1952, 83, 689.Suche in Google Scholar
[7] M. I. Kabachnik, T. Y. Medved, Akad. Nauk. SSSR.1953, 84, 1126.Suche in Google Scholar
[8] E. Fields, J. Am. Chem. Soc.1952, 74, 1528.10.1021/ja01126a054Suche in Google Scholar
[9] R. A. Cherkasov, V. I. Galkin, Russ. Chem. Rev.1998, 67, 847.10.1070/RC1998v067n05ABEH000383Suche in Google Scholar
[10] G. Keglevich, E. Bálint, R. Kangyal, M. Bálint, M. Milen, Heteroat. Chem.2014, 25, 282.10.1002/hc.21192Suche in Google Scholar
[11] G. Keglevich, A. Szekrényi, Lett. Org. Chem.2008, 5, 616.10.2174/157017808786857598Suche in Google Scholar
[12] I. Prauda, I. Greiner, K. Ludányi, G. Keglevich, Synth. Commun.2007, 37, 317.10.1080/00397910601033856Suche in Google Scholar
[13] G. Keglevich, A. Szekrényi, M. Sipos, K. Ludányi, I. Greiner, Heteroat. Chem.2008, 19, 207.10.1002/hc.20387Suche in Google Scholar
[14] E. A. Tarik, Arkivoc2014, 2014, 21.Suche in Google Scholar
[15] G. Keglevich, E. Bálint, Molecules2012, 17, 12821.10.3390/molecules171112821Suche in Google Scholar PubMed PubMed Central
[16] P. Kafarski, M. Gorny vel Gorniak, I. Andrasiak, Curr. Green Chem.2015, 2, 218.10.2174/2213346102666150109203606Suche in Google Scholar
[17] J. Zhu, H. Bienayme (Eds.), Multicomponent Reactions, Wiley-VCH, Weinheim, 2005.10.1002/3527605118Suche in Google Scholar
[18] B. Ganem, Acc. Chem. Res.2009, 42, 463.10.1021/ar800214sSuche in Google Scholar PubMed PubMed Central
[19] A. Dömling, I. Ugi, Angew. Chem. Int. Ed.2000, 39, 3169.10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-USuche in Google Scholar
[20] A. Shaabani, A. Maleki, A. H. Rezayan, A. J. Sarvary, Mol. Divers. 2011, 15, 41.10.1007/s11030-010-9258-1Suche in Google Scholar PubMed
[21] C. Altug, A. K. Burnett, E. Caner, Y. Durust, M. C. Elliott, R. P. J. Glanville, C. Guy, A. D. Westwell, Tetrahedron2011, 67, 9522.10.1016/j.tet.2011.10.005Suche in Google Scholar
[22] F. Rostami-Charati, R. Hajinasiri, S. Z. Sayyed Alangi, S. Afshari Sharif Abad, Chem. Pap.2016, 70, 907.10.1515/chempap-2016-0030Suche in Google Scholar
[23] H. Sajjadi-Ghotbabadi, S. Javanshir, F. Rostami-Charati, Catal. Lett.2016, 146, 338.10.1007/s10562-015-1652-ySuche in Google Scholar
[24] A. Soleimani, J. Asadi, F. Rostami-Charati, R. Gharaei, Comb. Chem. High Throughput Screening2015, 18, 505.10.2174/1386207318666150430114815Suche in Google Scholar PubMed
[25] F. Rostami-Charati, Z. S. Hossaini, F. Sheikholeslami-Farahani, Z. Azizi, S. A. Siadati, Comb. Chem. High Throughput Screening2015, 18, 872.10.2174/1386207318666150525094109Suche in Google Scholar PubMed
[26] M. N. Elinson, A. I. Ilovaisky, V. M. Merkulova, P. A. Belyakov, A. O. Chizhov, Tetrahedron2010, 66, 4043.10.1016/j.tet.2010.04.024Suche in Google Scholar
[27] M. G. Dekamin, Z. Mokhtari, Tetrahedron2012, 68, 922.10.1016/j.tet.2011.10.087Suche in Google Scholar
[28] M. G. Dekamin, Z. Mokhtari, Z. Karimi, Sci IranTrans C: Chem. Chem. Eng.2011, 18, 1356.10.1016/j.scient.2011.11.005Suche in Google Scholar
[29] T. Erdmenger, C. Guerrero-Sanchez, J. Vitz, R. Hoogenboom, U. S. Schubert, Chem. Soc. Rev.2010, 39, 3317.10.1039/b909964fSuche in Google Scholar PubMed
[30] M. AbdElAleem, A. A. El-Remaily, Tetrahedron2014, 70, 2971.10.1016/j.tet.2014.03.024Suche in Google Scholar
[31] G. W. V. Cave, C. L. Raston, J. L. Scott, Chem. Commun. 2001, 7, 2159.10.1039/b106677nSuche in Google Scholar
[32] R. A. Sheldon, Chem. Ind.1997, 1997, 12.10.1016/S0169-5347(97)82681-XSuche in Google Scholar
[33] F. Khaleghi, L. Bin Din, F. Rostami Charati, W. A. Yaacob, M. A. Khalilzadeh, B. Skelton, M. Makha, Phytochem. Lett.2011, 4, 254.10.1016/j.phytol.2011.04.009Suche in Google Scholar
[34] M. Sabbaghan, Z. Hossaini, Comb. Chem. High Throughput Screening2012, 15, 745.10.2174/138620712803519716Suche in Google Scholar PubMed
[35] M. Hosseini-Sarvari, H. Sharghi, S. Etemad, Helv. Chim. Acta2008, 91, 715.10.1002/hlca.200890072Suche in Google Scholar
[36] S. Paul, P. Bhattacharyya, A. R. Das, Tetrahedron Lett.2011, 52, 4636.10.1016/j.tetlet.2011.06.101Suche in Google Scholar
[37] H. R. Shaterian, M. Mohammadnia, J. Mol. Liq. 2013, 177, 353.10.1016/j.molliq.2012.10.012Suche in Google Scholar
[38] M. Sabbaghan, A. Anaraki Firooz, V. Jan Ahmadi, J. Mol. Liq.2012, 175, 135.10.1016/j.molliq.2012.08.019Suche in Google Scholar
Supplemental Material:
The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2017-0177).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this Issue
- Does Lewis basicity correlate with catalytic performance in zerovalent group 8 complexes?
- Crystal structure and luminescence properties of a new dinuclear bismuth(III) coordination polymer containing three types of ligands
- Syntheses, structures, and catalytic properties of two arene-ruthenium(II) complexes bearing N-(2-pyridinyl)aminodiphenylphosphine sulfide ligands
- Synthesis, characterization, anticancer and antimicrobial study of arene ruthenium(II) complexes with 1,2,4-triazole ligands containing an α-diimine moiety
- Green synthesis of α-aminophosphonates using ZnO nanoparticles as an efficient catalyst
- Nano-NiZr4(PO4)6 as a superior catalyst for the synthesis of propargylamines under ultrasound irradiation
- Efficient pseudo five-component synthesis of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives promoted by a novel ionic liquid catalyst
- Hydrothermal synthesis and crystal structure of a bisupporting Keggin-polyoxometalate hybrid compound decorated with a copper(II) complex unit
- Synthesis, crystal structure, luminescence and electrochemical properties of a Salamo-type trinuclear cobalt(II) complex
- New cholic acid analogs: synthesis and 17β-hydroxydehydrogenase (17β-HSD) inhibition activity
- Synthesis, vibrational spectra and single-crystal structure determination of lithium tricyanomethanide Li[C(CN)3]
- Silber(I)-cyanid-Komplexe mit Aminen und Azaaromaten
- The alkaline earth-palladium-germanides Sr3Pd4Ge4 and BaPdGe
- Equiatomic rare earth rhodium plumbides RERhPb (RE=Y, La–Nd, Sm, Gd–Lu) with ZrNiAl-type structure
- Notes
- Synthesis and crystal structure of [azido-bis(cis-1,2-diaminocyclohexane)copper(II)] chloride trihydrate
- A Co(II) complex from a pyridylamide ligand: synthesis and structural characterization
Artikel in diesem Heft
- Frontmatter
- In this Issue
- Does Lewis basicity correlate with catalytic performance in zerovalent group 8 complexes?
- Crystal structure and luminescence properties of a new dinuclear bismuth(III) coordination polymer containing three types of ligands
- Syntheses, structures, and catalytic properties of two arene-ruthenium(II) complexes bearing N-(2-pyridinyl)aminodiphenylphosphine sulfide ligands
- Synthesis, characterization, anticancer and antimicrobial study of arene ruthenium(II) complexes with 1,2,4-triazole ligands containing an α-diimine moiety
- Green synthesis of α-aminophosphonates using ZnO nanoparticles as an efficient catalyst
- Nano-NiZr4(PO4)6 as a superior catalyst for the synthesis of propargylamines under ultrasound irradiation
- Efficient pseudo five-component synthesis of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives promoted by a novel ionic liquid catalyst
- Hydrothermal synthesis and crystal structure of a bisupporting Keggin-polyoxometalate hybrid compound decorated with a copper(II) complex unit
- Synthesis, crystal structure, luminescence and electrochemical properties of a Salamo-type trinuclear cobalt(II) complex
- New cholic acid analogs: synthesis and 17β-hydroxydehydrogenase (17β-HSD) inhibition activity
- Synthesis, vibrational spectra and single-crystal structure determination of lithium tricyanomethanide Li[C(CN)3]
- Silber(I)-cyanid-Komplexe mit Aminen und Azaaromaten
- The alkaline earth-palladium-germanides Sr3Pd4Ge4 and BaPdGe
- Equiatomic rare earth rhodium plumbides RERhPb (RE=Y, La–Nd, Sm, Gd–Lu) with ZrNiAl-type structure
- Notes
- Synthesis and crystal structure of [azido-bis(cis-1,2-diaminocyclohexane)copper(II)] chloride trihydrate
- A Co(II) complex from a pyridylamide ligand: synthesis and structural characterization