Startseite Equiatomic rare earth rhodium plumbides RERhPb (RE=Y, La–Nd, Sm, Gd–Lu) with ZrNiAl-type structure
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Equiatomic rare earth rhodium plumbides RERhPb (RE=Y, La–Nd, Sm, Gd–Lu) with ZrNiAl-type structure

  • Lukas Heletta und Rainer Pöttgen EMAIL logo
Veröffentlicht/Copyright: 19. Februar 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The equiatomic plumbides RERhPb (RE=Y, La–Nd, Sm, Gd–Lu) were synthesized by induction melting of the elements in sealed niobium ampoules. The samples were characterized by X-ray powder diffraction, confirming their ZrNiAl-type structure, space group P6̅2m. Four structures were refined from single-crystal X-ray diffractometer data: a=769.42(5), c=415.60(3) pm, wR=0.0415, 343 F2 values, 15 variables for LaRhPb, a=767.91(6), c=369.37(4) pm, wR=0.0798, 284 F2 values, 15 variables for ErRhPb, a=767.01(8), c=366.21(4) pm, wR=0.0380, 341 F2 values, 15 variables for YbRhPb and a=766.9(1), c=363.42(6) pm, wR=0.0699, 290 F2 values, 15 variables for LuRhPb. The RERhPb plumbides contain two crystallographically independent rhodium atoms, both in tricapped trigonal prismatic coordination: Rh1@Pb3RE6 and Rh2@RE6Pb3. Short Rh–Pb distances (277 and 284 pm in ErRhPb) are indicative of covalent Rh–Pb bonding. The crystal chemical details of the RERhPb series are compared with the silver plumbides REAgPb which show different transition metal-lead coloring. Temperature dependent magnetic susceptibility data show Pauli paramagnetism for YRhPb, LaRhPb and LuRhPb. An antiferromagnetic ground state below the Néel temperatures of 13.5, 21.0 and 6.9 K was found for PrRhPb, TbRhPb and DyRhPb, respectively. HoRhPb exhibits Curie-Weiss behavior in the observed temperature range.

Acknowledgments

We thank Dipl.-Ing. U. Ch. Rodewald, Dipl.-Ing. J. Kösters and Dr. R.-D. Hoffmann for the collection of the single crystal diffractometer data.

References

[1] G.-Y. Adachi, N. Imanaka, Z. Fuzhong in Handbook on the Physics and Chemistry of Rare Earths, Vol. 15 (Eds.: K. A. Gschneidner Jr., L. Eyring), Elsevier Science B. V., Amsterdam, 1991, chapter 99, p. 61.10.1016/S0168-1273(05)80005-4Suche in Google Scholar

[2] E. Dashjav, G. Kreiner, W. Schnelle, F. R. Wagner, R. Kniep, W. Jeitschko, J. Solid State Chem. 2007, 180, 636.10.1016/j.jssc.2006.11.019Suche in Google Scholar

[3] V. Babizhetskyy, B. Kotur, V. Levytskyy, H. Michor in Handbook on the Physics and Chemistry of Rare Earths, Vol. 52 (Eds.: J.-C. Bünzli, V. K. Pecharsky), Elsevier, Amsterdam, 2017, chapter 298, p. 1.10.1016/bs.hpcre.2017.09.001Suche in Google Scholar

[4] E. Parthé, B. Chabot in Handbook on the Physics and Chemistry of Rare Earths, Vol. 6 (Eds.: K. A. Gschneidner Jr., L. Eyring), North-Holland, Amsterdam, 1984, chapter 48, p. 113.Suche in Google Scholar

[5] P. S. Salamakha, O. L. Sologub, O. I. Bodak in Handbook on the Physics and Chemistry of Rare Earths, Vol. 27 (Eds.: K. A. Gschneidner Jr., L. Eyring), Elsevier Science B. V., Amsterdam, 1999, chapter 173, p. 1.10.1016/S0168-1273(99)27004-3Suche in Google Scholar

[6] P. S. Salamakha in Handbook on the Physics and Chemistry of Rare Earths, Vol. 27 (Eds.: K. A. Gschneidner Jr., L. Eyring), Elsevier Science B. V., Amsterdam, 1999, chapter 174, p. 225.10.1016/S0168-1273(99)27005-5Suche in Google Scholar

[7] R. Pöttgen, Z. Naturforsch. 2006, 61b, 677.10.1515/znb-2006-0607Suche in Google Scholar

[8] R. V. Skolozdra in Handbook on the Physics and Chemistry of Rare Earths, Vol. 24 (Eds.: K. A. Gschneidner Jr., L. Eyring), Elsevier Science, Amsterdam, 1997, chapter 164, p. 399.10.1016/S0168-1273(97)24009-2Suche in Google Scholar

[9] R. Pöttgen, U. Ch. Rodewald in Handbook on the Physics and Chemistry of Rare Earths, Vol. 38 (Eds.: K. A. Gschneider Jr., V. K. Pecharsky, J.-C. Bünzli), Elsevier, Amsterdam, 2008, chapter 237, p. 55.10.1016/S0168-1273(07)38002-1Suche in Google Scholar

[10] J. Emsley, The Elements, Oxford University Press, Oxford, 1999.Suche in Google Scholar

[11] R. Pöttgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 289.10.1515/znb-2015-0018Suche in Google Scholar

[12] R. Pöttgen, O. Janka, B. Chevalier, Z. Naturforsch. 2016, 71b, 165.10.1515/znb-2016-0013Suche in Google Scholar

[13] L. D. Gulay, D. Kaczorowski, A. Szajek, A. Pietraszko, J. Phys. Chem. Solids2008, 69, 1934.10.1016/j.jpcs.2008.01.020Suche in Google Scholar

[14] R. Movshovich, J. M. Lawrence, M. F. Hundley, J. Neumeier, J. D. Thompson, A. Lacerda, Z. Fisk, Phys. Rev. B1996, 53, 5465.10.1103/PhysRevB.53.5465Suche in Google Scholar

[15] W. Hermes, S. Rayaprol, R. Pöttgen, Z. Naturforsch. 2007, 62b, 901.10.1515/znb-2007-0705Suche in Google Scholar

[16] A. M. Strydom, J. Alloys Compd. 2005, 394, 152.10.1016/j.jallcom.2004.09.073Suche in Google Scholar

[17] M. S. Kim, M. C. Aronson, J. Phys.: Condens. Matter2011, 23, 164204.10.1088/0953-8984/23/16/164204Suche in Google Scholar

[18] R. Pöttgen, P. E. Arpe, C. Felser, D. Kußmann, R. Müllmann, B. D. Mosel, B. Künnen, G. Kotzyba, J. Solid State Chem. 1999, 145, 668.10.1006/jssc.1998.8280Suche in Google Scholar

[19] M. S. Kim, M. C. Bennett, M. C. Aronson, Phys. Rev. B2008, 77, 144425.10.1103/PhysRevB.77.144425Suche in Google Scholar

[20] W. Miiller, L. S. Wu, M. S. Kim, T. Orvis, J. W. Simonson, M. Gamża, D. M. McNally, C. S. Nelson, G. Ehlers, A. Podlesnyak, J. S. Helton, Y. Zhao, Y. Qiu, J. R. D. Copley, J. W. Lynn, I. Zaliznyak, M. C. Aronson, Phys. Rev. B2016, 93, 104419.10.1103/PhysRevB.93.104419Suche in Google Scholar

[21] G. Venturini, M. Kamta, E. Mc Rae, J. F. Marêché, B. Malaman, B. Roques, Mater. Res. Bull.1986, 21, 1203.10.1016/0025-5408(86)90048-6Suche in Google Scholar

[22] D. A. Sokolov, M. C. Aronson, C. Henderson, J. W. Kampf, Phys. Rev. B2007, 76, 075109.10.1103/PhysRevB.76.075109Suche in Google Scholar

[23] E. L. Thomas, M. S. Kim, D. A. Sokolov, M. C. Bennett, M. C. Aronson, J. Y. Chan, J. Solid State Chem. 2007, 180, 2356.10.1016/j.jssc.2007.06.012Suche in Google Scholar

[24] F. Tappe, F. M. Schappacher, T. Langer, I. Schellenberg, R. Pöttgen, Z. Naturforsch. 2012, 67b, 594.10.5560/znb.2012-0070Suche in Google Scholar

[25] D. A. Sokolov, M. S. Kim, M. C. Aronson, C. Henderson, P. W. Stephens, Phys. Rev. B2008, 77, 174401.10.1103/PhysRevB.77.174401Suche in Google Scholar

[26] V. A. Ivanshin, T. O. Litvinova, A. A. Sukhanov, D. A. Sokolov, M. C. Aronson, JETP Lett. 2009, 90, 116.10.1134/S0021364009140070Suche in Google Scholar

[27] V. A. Ivanshin, T. O. Litvinova, N. A. Ivanshin, A. Pöppl, D. A. Sokolov, M. C. Aronson, J. Exp. Theor. Phys. 2014, 118, 760.10.1134/S1063776114050033Suche in Google Scholar

[28] M. C. Aronson, M. S. Kim, M. C. Bennett, Y. Janssen, D. A. Sokolov, L. Wu, J. Low Temp. Phys. 2010, 161, 98.10.1007/s10909-010-0203-6Suche in Google Scholar

[29] Y. Matsumoto, R. Goto, Y. Haga, Z. Fisk, S. Ohara, J. Phys.: Conf. Ser.2017, 807, 042006.10.1088/1742-6596/807/4/042006Suche in Google Scholar

[30] R. Pöttgen, Th. Gulden, A. Simon, GIT Labor-Fachzeitschrift1999, 43, 133.Suche in Google Scholar

[31] R. Pöttgen, A. Lang, R.-D. Hoffmann, B. Künnen, G. Kotzyba, R. Müllmann, B. D. Mosel, C. Rosenhahn, Z. Kristallogr. 1999, 214, 143.10.1524/zkri.1999.214.3.143Suche in Google Scholar

[32] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr.1977, 10, 73.10.1107/S0021889877012898Suche in Google Scholar

[33] L. Palatinus, Acta Crystallogr.2013, 69B, 1.10.1107/S0108767313099868Suche in Google Scholar

[34] L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 2007, 40, 78610.1107/S0021889807029238Suche in Google Scholar

[35] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. 2014, 229, 345.10.1515/zkri-2014-1737Suche in Google Scholar

[36] H. D. Flack, G. Bernadinelli, Acta Crystallogr. 1999, A55, 908.10.1107/S0108767399004262Suche in Google Scholar

[37] H. D. Flack, G. Bernadinelli, J. Appl. Crystallogr. 2000, 33, 1143.10.1107/S0021889800007184Suche in Google Scholar

[38] S. Parsons, H. D. Flack, T. Wagner, Acta Crystallogr. 2013, 69B, 249.10.1107/S2052519213010014Suche in Google Scholar

[39] P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2017/18), ASM International®, Materials Park, Ohio (USA) 2017.Suche in Google Scholar

[40] E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii, TYPIX-Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th edition, Springer, Berlin, 1993.10.1007/978-3-662-10641-9Suche in Google Scholar

[41] S. Gupta, K. G. Suresh, J. Alloys Compd. 2015, 618, 562.10.1016/j.jallcom.2014.08.079Suche in Google Scholar

[42] L. D. Gulay, J. Alloys Compd. 2001, 314, 219.10.1016/S0925-8388(00)01252-4Suche in Google Scholar

[43] L. M. Gelato, E. Parthé, J. Appl. Crystallogr. 1987, 20, 139.10.1107/S0021889887086965Suche in Google Scholar

[44] E. Parthé, L. M. Gelato, Acta Crystallogr. 1984, A40, 169.10.1107/S0108767384000416Suche in Google Scholar

[45] C. P. Sebastian, H. Eckert, C. Fehse, J. P. Wright, J. P. Attfield, D. Johrendt, S. Rayaprol, R.-D. Hoffmann, R. Pöttgen, J. Solid State Chem. 2006, 179, 2376.10.1016/j.jssc.2006.04.038Suche in Google Scholar

[46] J. Donohue, The Structures of the Elements, Wiley, New York, 1974.Suche in Google Scholar

[47] M. Jansen, Angew. Chem. Int. Ed. Engl. 1987, 26, 1098.10.1002/anie.198710981Suche in Google Scholar

[48] H. Schmidbaur, A. Schier, Angew. Chem. Int. Ed. 2015, 54, 746.10.1002/anie.201405936Suche in Google Scholar PubMed

[49] A. Iandelli, J. Alloys Compd. 1994, 203, 137.10.1016/0925-8388(94)90724-2Suche in Google Scholar

[50] R. Marazza, D. Mazzone, P. Riani, G. Zanicchi, J. Alloys Compd. 1995, 220, 241.10.1016/0925-8388(94)06022-3Suche in Google Scholar

[51] G. Melnyk, L. D. Gulay, W. Tremel, J. Alloys Compd. 2012, 528, 70.10.1016/j.jallcom.2012.01.063Suche in Google Scholar

[52] S. Manni, S. L. Bud’ko, P. C. Canfield, Phys. Rev. B2017, 96, 054435.10.1103/PhysRevB.96.054435Suche in Google Scholar

[53] H. Lueken, Magnetochemie, Teubner Studienbücher Chemie, Leipzig, 1999.10.1007/978-3-322-80118-0Suche in Google Scholar

[54] A. Szytuła, B. Penc, E. Ressouche, J. Alloys Compd. 1996, 244, 94.10.1016/S0925-8388(96)02437-1Suche in Google Scholar

[55] D. Gignoux, D. Schmitt, A. Takeuchi, F. Y. Zhang, C. Rouchon, E. Rondaut, J. Magn. Magn. Mater. 1991, 98, 333.10.1016/0304-8853(91)90247-8Suche in Google Scholar

Received: 2018-1-15
Accepted: 2018-1-18
Published Online: 2018-2-19
Published in Print: 2018-4-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. In this Issue
  3. Does Lewis basicity correlate with catalytic performance in zerovalent group 8 complexes?
  4. Crystal structure and luminescence properties of a new dinuclear bismuth(III) coordination polymer containing three types of ligands
  5. Syntheses, structures, and catalytic properties of two arene-ruthenium(II) complexes bearing N-(2-pyridinyl)aminodiphenylphosphine sulfide ligands
  6. Synthesis, characterization, anticancer and antimicrobial study of arene ruthenium(II) complexes with 1,2,4-triazole ligands containing an α-diimine moiety
  7. Green synthesis of α-aminophosphonates using ZnO nanoparticles as an efficient catalyst
  8. Nano-NiZr4(PO4)6 as a superior catalyst for the synthesis of propargylamines under ultrasound irradiation
  9. Efficient pseudo five-component synthesis of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives promoted by a novel ionic liquid catalyst
  10. Hydrothermal synthesis and crystal structure of a bisupporting Keggin-polyoxometalate hybrid compound decorated with a copper(II) complex unit
  11. Synthesis, crystal structure, luminescence and electrochemical properties of a Salamo-type trinuclear cobalt(II) complex
  12. New cholic acid analogs: synthesis and 17β-hydroxydehydrogenase (17β-HSD) inhibition activity
  13. Synthesis, vibrational spectra and single-crystal structure determination of lithium tricyanomethanide Li[C(CN)3]
  14. Silber(I)-cyanid-Komplexe mit Aminen und Azaaromaten
  15. The alkaline earth-palladium-germanides Sr3Pd4Ge4 and BaPdGe
  16. Equiatomic rare earth rhodium plumbides RERhPb (RE=Y, La–Nd, Sm, Gd–Lu) with ZrNiAl-type structure
  17. Notes
  18. Synthesis and crystal structure of [azido-bis(cis-1,2-diaminocyclohexane)copper(II)] chloride trihydrate
  19. A Co(II) complex from a pyridylamide ligand: synthesis and structural characterization
Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0012/html
Button zum nach oben scrollen