Home Equiatomic rare earth rhodium plumbides RERhPb (RE=Y, La–Nd, Sm, Gd–Lu) with ZrNiAl-type structure
Article
Licensed
Unlicensed Requires Authentication

Equiatomic rare earth rhodium plumbides RERhPb (RE=Y, La–Nd, Sm, Gd–Lu) with ZrNiAl-type structure

  • Lukas Heletta and Rainer Pöttgen EMAIL logo
Published/Copyright: February 19, 2018
Become an author with De Gruyter Brill

Abstract

The equiatomic plumbides RERhPb (RE=Y, La–Nd, Sm, Gd–Lu) were synthesized by induction melting of the elements in sealed niobium ampoules. The samples were characterized by X-ray powder diffraction, confirming their ZrNiAl-type structure, space group P6̅2m. Four structures were refined from single-crystal X-ray diffractometer data: a=769.42(5), c=415.60(3) pm, wR=0.0415, 343 F2 values, 15 variables for LaRhPb, a=767.91(6), c=369.37(4) pm, wR=0.0798, 284 F2 values, 15 variables for ErRhPb, a=767.01(8), c=366.21(4) pm, wR=0.0380, 341 F2 values, 15 variables for YbRhPb and a=766.9(1), c=363.42(6) pm, wR=0.0699, 290 F2 values, 15 variables for LuRhPb. The RERhPb plumbides contain two crystallographically independent rhodium atoms, both in tricapped trigonal prismatic coordination: Rh1@Pb3RE6 and Rh2@RE6Pb3. Short Rh–Pb distances (277 and 284 pm in ErRhPb) are indicative of covalent Rh–Pb bonding. The crystal chemical details of the RERhPb series are compared with the silver plumbides REAgPb which show different transition metal-lead coloring. Temperature dependent magnetic susceptibility data show Pauli paramagnetism for YRhPb, LaRhPb and LuRhPb. An antiferromagnetic ground state below the Néel temperatures of 13.5, 21.0 and 6.9 K was found for PrRhPb, TbRhPb and DyRhPb, respectively. HoRhPb exhibits Curie-Weiss behavior in the observed temperature range.

Acknowledgments

We thank Dipl.-Ing. U. Ch. Rodewald, Dipl.-Ing. J. Kösters and Dr. R.-D. Hoffmann for the collection of the single crystal diffractometer data.

References

[1] G.-Y. Adachi, N. Imanaka, Z. Fuzhong in Handbook on the Physics and Chemistry of Rare Earths, Vol. 15 (Eds.: K. A. Gschneidner Jr., L. Eyring), Elsevier Science B. V., Amsterdam, 1991, chapter 99, p. 61.10.1016/S0168-1273(05)80005-4Search in Google Scholar

[2] E. Dashjav, G. Kreiner, W. Schnelle, F. R. Wagner, R. Kniep, W. Jeitschko, J. Solid State Chem. 2007, 180, 636.10.1016/j.jssc.2006.11.019Search in Google Scholar

[3] V. Babizhetskyy, B. Kotur, V. Levytskyy, H. Michor in Handbook on the Physics and Chemistry of Rare Earths, Vol. 52 (Eds.: J.-C. Bünzli, V. K. Pecharsky), Elsevier, Amsterdam, 2017, chapter 298, p. 1.10.1016/bs.hpcre.2017.09.001Search in Google Scholar

[4] E. Parthé, B. Chabot in Handbook on the Physics and Chemistry of Rare Earths, Vol. 6 (Eds.: K. A. Gschneidner Jr., L. Eyring), North-Holland, Amsterdam, 1984, chapter 48, p. 113.Search in Google Scholar

[5] P. S. Salamakha, O. L. Sologub, O. I. Bodak in Handbook on the Physics and Chemistry of Rare Earths, Vol. 27 (Eds.: K. A. Gschneidner Jr., L. Eyring), Elsevier Science B. V., Amsterdam, 1999, chapter 173, p. 1.10.1016/S0168-1273(99)27004-3Search in Google Scholar

[6] P. S. Salamakha in Handbook on the Physics and Chemistry of Rare Earths, Vol. 27 (Eds.: K. A. Gschneidner Jr., L. Eyring), Elsevier Science B. V., Amsterdam, 1999, chapter 174, p. 225.10.1016/S0168-1273(99)27005-5Search in Google Scholar

[7] R. Pöttgen, Z. Naturforsch. 2006, 61b, 677.10.1515/znb-2006-0607Search in Google Scholar

[8] R. V. Skolozdra in Handbook on the Physics and Chemistry of Rare Earths, Vol. 24 (Eds.: K. A. Gschneidner Jr., L. Eyring), Elsevier Science, Amsterdam, 1997, chapter 164, p. 399.10.1016/S0168-1273(97)24009-2Search in Google Scholar

[9] R. Pöttgen, U. Ch. Rodewald in Handbook on the Physics and Chemistry of Rare Earths, Vol. 38 (Eds.: K. A. Gschneider Jr., V. K. Pecharsky, J.-C. Bünzli), Elsevier, Amsterdam, 2008, chapter 237, p. 55.10.1016/S0168-1273(07)38002-1Search in Google Scholar

[10] J. Emsley, The Elements, Oxford University Press, Oxford, 1999.Search in Google Scholar

[11] R. Pöttgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 289.10.1515/znb-2015-0018Search in Google Scholar

[12] R. Pöttgen, O. Janka, B. Chevalier, Z. Naturforsch. 2016, 71b, 165.10.1515/znb-2016-0013Search in Google Scholar

[13] L. D. Gulay, D. Kaczorowski, A. Szajek, A. Pietraszko, J. Phys. Chem. Solids2008, 69, 1934.10.1016/j.jpcs.2008.01.020Search in Google Scholar

[14] R. Movshovich, J. M. Lawrence, M. F. Hundley, J. Neumeier, J. D. Thompson, A. Lacerda, Z. Fisk, Phys. Rev. B1996, 53, 5465.10.1103/PhysRevB.53.5465Search in Google Scholar

[15] W. Hermes, S. Rayaprol, R. Pöttgen, Z. Naturforsch. 2007, 62b, 901.10.1515/znb-2007-0705Search in Google Scholar

[16] A. M. Strydom, J. Alloys Compd. 2005, 394, 152.10.1016/j.jallcom.2004.09.073Search in Google Scholar

[17] M. S. Kim, M. C. Aronson, J. Phys.: Condens. Matter2011, 23, 164204.10.1088/0953-8984/23/16/164204Search in Google Scholar

[18] R. Pöttgen, P. E. Arpe, C. Felser, D. Kußmann, R. Müllmann, B. D. Mosel, B. Künnen, G. Kotzyba, J. Solid State Chem. 1999, 145, 668.10.1006/jssc.1998.8280Search in Google Scholar

[19] M. S. Kim, M. C. Bennett, M. C. Aronson, Phys. Rev. B2008, 77, 144425.10.1103/PhysRevB.77.144425Search in Google Scholar

[20] W. Miiller, L. S. Wu, M. S. Kim, T. Orvis, J. W. Simonson, M. Gamża, D. M. McNally, C. S. Nelson, G. Ehlers, A. Podlesnyak, J. S. Helton, Y. Zhao, Y. Qiu, J. R. D. Copley, J. W. Lynn, I. Zaliznyak, M. C. Aronson, Phys. Rev. B2016, 93, 104419.10.1103/PhysRevB.93.104419Search in Google Scholar

[21] G. Venturini, M. Kamta, E. Mc Rae, J. F. Marêché, B. Malaman, B. Roques, Mater. Res. Bull.1986, 21, 1203.10.1016/0025-5408(86)90048-6Search in Google Scholar

[22] D. A. Sokolov, M. C. Aronson, C. Henderson, J. W. Kampf, Phys. Rev. B2007, 76, 075109.10.1103/PhysRevB.76.075109Search in Google Scholar

[23] E. L. Thomas, M. S. Kim, D. A. Sokolov, M. C. Bennett, M. C. Aronson, J. Y. Chan, J. Solid State Chem. 2007, 180, 2356.10.1016/j.jssc.2007.06.012Search in Google Scholar

[24] F. Tappe, F. M. Schappacher, T. Langer, I. Schellenberg, R. Pöttgen, Z. Naturforsch. 2012, 67b, 594.10.5560/znb.2012-0070Search in Google Scholar

[25] D. A. Sokolov, M. S. Kim, M. C. Aronson, C. Henderson, P. W. Stephens, Phys. Rev. B2008, 77, 174401.10.1103/PhysRevB.77.174401Search in Google Scholar

[26] V. A. Ivanshin, T. O. Litvinova, A. A. Sukhanov, D. A. Sokolov, M. C. Aronson, JETP Lett. 2009, 90, 116.10.1134/S0021364009140070Search in Google Scholar

[27] V. A. Ivanshin, T. O. Litvinova, N. A. Ivanshin, A. Pöppl, D. A. Sokolov, M. C. Aronson, J. Exp. Theor. Phys. 2014, 118, 760.10.1134/S1063776114050033Search in Google Scholar

[28] M. C. Aronson, M. S. Kim, M. C. Bennett, Y. Janssen, D. A. Sokolov, L. Wu, J. Low Temp. Phys. 2010, 161, 98.10.1007/s10909-010-0203-6Search in Google Scholar

[29] Y. Matsumoto, R. Goto, Y. Haga, Z. Fisk, S. Ohara, J. Phys.: Conf. Ser.2017, 807, 042006.10.1088/1742-6596/807/4/042006Search in Google Scholar

[30] R. Pöttgen, Th. Gulden, A. Simon, GIT Labor-Fachzeitschrift1999, 43, 133.Search in Google Scholar

[31] R. Pöttgen, A. Lang, R.-D. Hoffmann, B. Künnen, G. Kotzyba, R. Müllmann, B. D. Mosel, C. Rosenhahn, Z. Kristallogr. 1999, 214, 143.10.1524/zkri.1999.214.3.143Search in Google Scholar

[32] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr.1977, 10, 73.10.1107/S0021889877012898Search in Google Scholar

[33] L. Palatinus, Acta Crystallogr.2013, 69B, 1.10.1107/S0108767313099868Search in Google Scholar

[34] L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 2007, 40, 78610.1107/S0021889807029238Search in Google Scholar

[35] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. 2014, 229, 345.10.1515/zkri-2014-1737Search in Google Scholar

[36] H. D. Flack, G. Bernadinelli, Acta Crystallogr. 1999, A55, 908.10.1107/S0108767399004262Search in Google Scholar

[37] H. D. Flack, G. Bernadinelli, J. Appl. Crystallogr. 2000, 33, 1143.10.1107/S0021889800007184Search in Google Scholar

[38] S. Parsons, H. D. Flack, T. Wagner, Acta Crystallogr. 2013, 69B, 249.10.1107/S2052519213010014Search in Google Scholar

[39] P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2017/18), ASM International®, Materials Park, Ohio (USA) 2017.Search in Google Scholar

[40] E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii, TYPIX-Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th edition, Springer, Berlin, 1993.10.1007/978-3-662-10641-9Search in Google Scholar

[41] S. Gupta, K. G. Suresh, J. Alloys Compd. 2015, 618, 562.10.1016/j.jallcom.2014.08.079Search in Google Scholar

[42] L. D. Gulay, J. Alloys Compd. 2001, 314, 219.10.1016/S0925-8388(00)01252-4Search in Google Scholar

[43] L. M. Gelato, E. Parthé, J. Appl. Crystallogr. 1987, 20, 139.10.1107/S0021889887086965Search in Google Scholar

[44] E. Parthé, L. M. Gelato, Acta Crystallogr. 1984, A40, 169.10.1107/S0108767384000416Search in Google Scholar

[45] C. P. Sebastian, H. Eckert, C. Fehse, J. P. Wright, J. P. Attfield, D. Johrendt, S. Rayaprol, R.-D. Hoffmann, R. Pöttgen, J. Solid State Chem. 2006, 179, 2376.10.1016/j.jssc.2006.04.038Search in Google Scholar

[46] J. Donohue, The Structures of the Elements, Wiley, New York, 1974.Search in Google Scholar

[47] M. Jansen, Angew. Chem. Int. Ed. Engl. 1987, 26, 1098.10.1002/anie.198710981Search in Google Scholar

[48] H. Schmidbaur, A. Schier, Angew. Chem. Int. Ed. 2015, 54, 746.10.1002/anie.201405936Search in Google Scholar PubMed

[49] A. Iandelli, J. Alloys Compd. 1994, 203, 137.10.1016/0925-8388(94)90724-2Search in Google Scholar

[50] R. Marazza, D. Mazzone, P. Riani, G. Zanicchi, J. Alloys Compd. 1995, 220, 241.10.1016/0925-8388(94)06022-3Search in Google Scholar

[51] G. Melnyk, L. D. Gulay, W. Tremel, J. Alloys Compd. 2012, 528, 70.10.1016/j.jallcom.2012.01.063Search in Google Scholar

[52] S. Manni, S. L. Bud’ko, P. C. Canfield, Phys. Rev. B2017, 96, 054435.10.1103/PhysRevB.96.054435Search in Google Scholar

[53] H. Lueken, Magnetochemie, Teubner Studienbücher Chemie, Leipzig, 1999.10.1007/978-3-322-80118-0Search in Google Scholar

[54] A. Szytuła, B. Penc, E. Ressouche, J. Alloys Compd. 1996, 244, 94.10.1016/S0925-8388(96)02437-1Search in Google Scholar

[55] D. Gignoux, D. Schmitt, A. Takeuchi, F. Y. Zhang, C. Rouchon, E. Rondaut, J. Magn. Magn. Mater. 1991, 98, 333.10.1016/0304-8853(91)90247-8Search in Google Scholar

Received: 2018-1-15
Accepted: 2018-1-18
Published Online: 2018-2-19
Published in Print: 2018-4-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this Issue
  3. Does Lewis basicity correlate with catalytic performance in zerovalent group 8 complexes?
  4. Crystal structure and luminescence properties of a new dinuclear bismuth(III) coordination polymer containing three types of ligands
  5. Syntheses, structures, and catalytic properties of two arene-ruthenium(II) complexes bearing N-(2-pyridinyl)aminodiphenylphosphine sulfide ligands
  6. Synthesis, characterization, anticancer and antimicrobial study of arene ruthenium(II) complexes with 1,2,4-triazole ligands containing an α-diimine moiety
  7. Green synthesis of α-aminophosphonates using ZnO nanoparticles as an efficient catalyst
  8. Nano-NiZr4(PO4)6 as a superior catalyst for the synthesis of propargylamines under ultrasound irradiation
  9. Efficient pseudo five-component synthesis of 4,4′-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol) derivatives promoted by a novel ionic liquid catalyst
  10. Hydrothermal synthesis and crystal structure of a bisupporting Keggin-polyoxometalate hybrid compound decorated with a copper(II) complex unit
  11. Synthesis, crystal structure, luminescence and electrochemical properties of a Salamo-type trinuclear cobalt(II) complex
  12. New cholic acid analogs: synthesis and 17β-hydroxydehydrogenase (17β-HSD) inhibition activity
  13. Synthesis, vibrational spectra and single-crystal structure determination of lithium tricyanomethanide Li[C(CN)3]
  14. Silber(I)-cyanid-Komplexe mit Aminen und Azaaromaten
  15. The alkaline earth-palladium-germanides Sr3Pd4Ge4 and BaPdGe
  16. Equiatomic rare earth rhodium plumbides RERhPb (RE=Y, La–Nd, Sm, Gd–Lu) with ZrNiAl-type structure
  17. Notes
  18. Synthesis and crystal structure of [azido-bis(cis-1,2-diaminocyclohexane)copper(II)] chloride trihydrate
  19. A Co(II) complex from a pyridylamide ligand: synthesis and structural characterization
Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0012/html
Scroll to top button